Home
Class 12
MATHS
If y=sin^(-1)(sinx) , -pi/2lt=xlt=pi/2 ....

If `y=sin^(-1)(sinx)` , `-pi/2lt=xlt=pi/2` . Then, write the value of `(dy)/(dx)` for `x in (-pi/2,pi/2)` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA ENGLISH|Exercise All Questions|107 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is

Solve the initial value problem: x(dy)/(dx)+y=xcosx+sinx ,\ y\ (pi/2)=1

If sin x = 1/4 , pi/2 lt x lt pi , find the values of cos\ x/2 and tan\ x/2 .

If y=int_(0)^(x)sqrt(sin x)dx the value of (dy)/(dx) at x=(pi)/(2) is :

Write the value of the following integral: int_(-pi/2)^(pi/2)sin^5x\ dx

The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Find dy/dx if y=(pi)/2-sinx

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)