Home
Class 11
PHYSICS
The frequency of vibration of string dep...

The frequency of vibration of string depends on the length L between the nodes, the tension F in the string and its mass per unit length m. Guess the expression for its frequency from dimensional analysis.

Text Solution

AI Generated Solution

To derive the expression for the frequency of vibration of a string using dimensional analysis, we will follow these steps: ### Step 1: Identify the Variables We have three variables affecting the frequency \( f \): - Length \( L \) - Tension \( F \) - Mass per unit length \( m \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO PHYSICS

    HC VERMA ENGLISH|Exercise Question for short Answer|4 Videos
  • INTRODUCTION TO PHYSICS

    HC VERMA ENGLISH|Exercise Objective 2|3 Videos
  • HEAT TRANSFER

    HC VERMA ENGLISH|Exercise QUESTIONS FOR SHORT ANSWER|11 Videos
  • KINETIC THEORY OF GASES

    HC VERMA ENGLISH|Exercise All Questions|106 Videos

Similar Questions

Explore conceptually related problems

The frequency (f) of a stretched string depends upen the tension F (dimensions of form ) of the string and the mass per unit length mu of string .Derive the formula for frequency

The frequency v of the stretched string may depend on (i) the length of the vibrating segment 1 (ii) the tension in the string and (iii) the mass per unit length m. Show that v prop 1/l sqrt(F/m) .

How is the frequency of a stretched string related to: Its length?

The frequency of vibration of string is given by v=p/(2l)[F/m]^(1//2) . Here p is number of segments in the string and l is the length. The dimensional formula for m will be

The velocity of transverse wave in a string is v = sqrt( T//m) where T is the tension in the string and m is the mass per unit length . If T = 3.0 kgf , the mass of string is 25g and length of the string is v = 1.000 m , then the percentage error in the measurement of velocity is

The frequency (n) of vibration of a string is given as n = (1)/( 2 l) sqrt((T)/(m)) , where T is tension and l is the length of vibrating string , then the dimensional formula for m is

Estimation of frequency of a wave forming a standing wave represented by y = A sin kx cos t can be done if the speed and wavelength are known using speed = "Frequency" xx "wavelength" . Speed of motion depends on the medium properties namely tension in string and mass per unit length of string . A string may vibrate with different frequencies . The corresponding wavelength should be related to the length of the string by a whole number for a string fixed at both ends . Answer the following questions: Speed of a wave in a string forming a stationary wave does not depend on

Derive an expression for the velocity of pulse in a in stretched in string under a tension T and mu is the mass per unit length of the sting.

Estimation of frequency of a wave forming a standing wave represented by y = A sin kx cos t can be done if the speed and wavelength are known using speed = "Frequency" xx "wavelength" . Speed of motion depends on the medium properties namely tension in string and mass per unit length of string . A string may vibrate with different frequencies . The corresponding wavelength should be related to the length of the string by a whole number for a string fixed at both ends . Answer the following questions: A string fixed at both ends having a third overtone frequency of 200 Hz while carrying a wave at a speed of 30 ms^(-1) has a length of

Estimation of frequency of a wave forming a standing wave represented by y = A sin kx cos t can be done if the speed and wavelength are known using speed = "Frequency" xx "wavelength" . Speed of motion depends on the medium properties namely tension in string and mass per unit length of string . A string may vibrate with different frequencies . The corresponding wavelength should be related to the length of the string by a whole number for a string fixed at both ends . Answer the following questions: If y = 10 sin 5 x cos 2 t m represents a stationary wave then , the possible one of the travelling waves causing this is

HC VERMA ENGLISH-INTRODUCTION TO PHYSICS-Exercises
  1. Find the dimensions of a. linear momentum b. frequency and c. pr...

    Text Solution

    |

  2. Find the dimensions of a. angular speed omega angular acceleration...

    Text Solution

    |

  3. Find the dimensions of a. electric field E, magnetic field B and ...

    Text Solution

    |

  4. Find the dimensions of a. electric dipole moment p and b. magnetic ...

    Text Solution

    |

  5. Find the dimensions of Planck's constant h from the equatioin E=hv whe...

    Text Solution

    |

  6. Find the dimensions of a. the specific heat capacity c, b. the coe...

    Text Solution

    |

  7. Taking foce, length and time to be the fundamental quantities find the...

    Text Solution

    |

  8. Suppose the acceleration due to gravity at a place is 10 m/s^2. Find i...

    Text Solution

    |

  9. The average speed of a snails is 0.020 miles/ hour and that of a leopa...

    Text Solution

    |

  10. The height of mercury column in a barometer in a Calcutta laboratory ...

    Text Solution

    |

  11. Express the power of a 100 wtt bulb in CGS unit.

    Text Solution

    |

  12. The normal duratioin of I.Sc. Physics practical period in Indian colle...

    Text Solution

    |

  13. The surface tension of water is 72 dyne//cm. convert it inSI unit.

    Text Solution

    |

  14. The kinetic energy K of a rotating body depends on its moment of inert...

    Text Solution

    |

  15. Theory of relativity reveals that mass can be converted into energy. T...

    Text Solution

    |

  16. Let I= current through a conductor, R= its resistance and V= potential...

    Text Solution

    |

  17. The frequency of vibration of string depends on the length L between t...

    Text Solution

    |

  18. Test if the following equations are dimensionally correct: (a) h=(2...

    Text Solution

    |

  19. Let x and a stand of distance is int(dx)/(sqrt(a^2-x^2)) = (1)/(alpha)...

    Text Solution

    |