Home
Class 11
CHEMISTRY
Using the standerd half-cell potential l...

Using the standerd half-cell potential listed, calculate the equilibrium constant for the reaction :
`Co(s)+2H^(+)(aq)toCo^(2+)(aq)+H_(2)(g)" at 298 K"`
`Co^(2+)(aq)+2e^(-)toCo(s) E^(@)=-0.277 V`

A

`2.3xx10^(9)`

B

`4.8xx10^(4)`

C

`4.8xx10^(7)`

D

`4.8xx10^(11)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the equilibrium constant for the reaction: \[ \text{Co(s)} + 2\text{H}^+(aq) \rightarrow \text{Co}^{2+}(aq) + \text{H}_2(g) \] we will follow these steps: ### Step 1: Identify the half-reactions and their standard potentials The given half-reaction and its standard potential is: \[ \text{Co}^{2+}(aq) + 2e^- \rightarrow \text{Co(s)} \quad E^\circ = -0.277 \, \text{V} \] For the overall reaction, we need to reverse this half-reaction to represent oxidation: \[ \text{Co(s)} \rightarrow \text{Co}^{2+}(aq) + 2e^- \quad E^\circ = +0.277 \, \text{V} \] The reduction half-reaction for hydrogen is: \[ 2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g) \quad E^\circ = 0.00 \, \text{V} \] ### Step 2: Calculate the standard cell potential (E°cell) The standard cell potential (E°cell) can be calculated by adding the oxidation potential of cobalt and the reduction potential of hydrogen: \[ E^\circ_{\text{cell}} = E^\circ_{\text{oxidation}} + E^\circ_{\text{reduction}} \] \[ E^\circ_{\text{cell}} = 0.277 \, \text{V} + 0.00 \, \text{V} = 0.277 \, \text{V} \] ### Step 3: Use the Nernst equation to find the equilibrium constant (K) The Nernst equation at equilibrium is given by: \[ E^\circ_{\text{cell}} = \frac{0.0591}{n} \log K \] Where: - \(E^\circ_{\text{cell}} = 0.277 \, \text{V}\) - \(n\) is the number of moles of electrons transferred in the balanced equation. Here, \(n = 2\) (from Co to Co²⁺ and from 2H⁺ to H₂). Substituting the values into the Nernst equation: \[ 0.277 = \frac{0.0591}{2} \log K \] ### Step 4: Solve for log K Rearranging the equation to solve for \(\log K\): \[ \log K = \frac{2 \times 0.277}{0.0591} \] Calculating the right side: \[ \log K = \frac{0.554}{0.0591} \approx 9.37 \] ### Step 5: Calculate K To find \(K\), we take the antilog: \[ K = 10^{9.37} \approx 2.3 \times 10^9 \] ### Final Answer Thus, the equilibrium constant \(K\) for the reaction is: \[ \boxed{2.3 \times 10^9} \] ---
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-2|28 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-3|37 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos

Similar Questions

Explore conceptually related problems

The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is

The equilibrium constant of the reaction; Cu(s)+2Ag + (aq)⟶Cu 2+ (aq)+2Ag(s) E o =0.46V at 298K

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant for the reaction at 298 K Zn(s)+Cu^(2+)(aq)harr Zn^(2+)(aq)+Cu(s) Given " " E_(Zn^(2+)//Zn)^(@)=-0.76 V and E_(Cu^(2+)//Cu)^(@)=+0.34 V

The equivalent constant of the reaction: Cu(s)+2Ag^(+)(aq.) rarr Cu^(2+)(aq.)+2Ag(s) E^(@)=0.46 V at 298 K ,is:

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

Determine the value of equilibrium constant for the reaction 2Br^(-)(aq)+I_(2)(s)hArr Br_(2)(l)+2I^(-)(aq)E_("cell")^(@)=-0.54v

Calculate the equilibrium constant for the reaction: Cd^(2+) (aq) +Zn(s) hArr Zn^(2+) (aq) +Cd (s) If E_(Cd^(2+)//Cd)^(Theta) = -0.403V E_(Zn^(2+)//Zn)^(Theta) = -0.763 V