Home
Class 11
CHEMISTRY
Estimate the E^(@) reduction for Cu|CuS ...

Estimate the `E^(@)` reduction for `Cu|CuS` electrode.
Given `: K_(sp) ` of `CuS=8.0 xx 10^(-36),E^(@)._((Cu|Cu^(2+)))=-0.34V`

A

1.034 V

B

1.0 V

C

`-0.694V`

D

0.694 V

Text Solution

AI Generated Solution

The correct Answer is:
To estimate the \( E^\circ \) reduction potential for the \( Cu|CuS \) electrode, we will follow these steps: ### Step 1: Write the half-reactions The oxidation and reduction half-reactions for copper and copper sulfide can be written as follows: - **Oxidation (anode)**: \[ Cu \rightarrow Cu^{2+} + 2e^- \] - **Reduction (cathode)**: \[ CuS + 2e^- \rightarrow Cu + S^{2-} \] ### Step 2: Combine the half-reactions The net reaction can be obtained by combining the oxidation and reduction half-reactions: \[ Cu + CuS \rightarrow Cu^{2+} + S^{2-} \] ### Step 3: Use the Nernst equation The Nernst equation for the cell potential is given by: \[ E_{cell} = E^\circ_{cell} - \frac{0.0591}{n} \log Q \] Where: - \( E_{cell} \) is the cell potential, - \( E^\circ_{cell} \) is the standard cell potential, - \( n \) is the number of moles of electrons transferred, - \( Q \) is the reaction quotient. ### Step 4: Determine \( n \) and \( Q \) From the half-reactions, we see that \( n = 2 \) (2 electrons are transferred). At equilibrium, \( Q \) becomes the solubility product \( K_{sp} \) of \( CuS \): \[ K_{sp} = [Cu^{2+}][S^{2-}] \] Given \( K_{sp} = 8.0 \times 10^{-36} \). ### Step 5: Set \( E_{cell} = 0 \) for equilibrium At equilibrium, \( E_{cell} = 0 \). Thus, we can write: \[ 0 = E^\circ_{cell} - \frac{0.0591}{2} \log(8.0 \times 10^{-36}) \] ### Step 6: Calculate \( \log K_{sp} \) Calculate \( \log(8.0 \times 10^{-36}) \): \[ \log(8.0 \times 10^{-36}) = \log(8.0) + \log(10^{-36}) = 0.903 - 36 = -35.097 \] ### Step 7: Substitute into the Nernst equation Substituting back into the equation: \[ 0 = E^\circ_{cell} - \frac{0.0591}{2} \times (-35.097) \] ### Step 8: Solve for \( E^\circ_{cell} \) Calculating the right side: \[ E^\circ_{cell} = \frac{0.0591}{2} \times 35.097 \] Calculating this gives: \[ E^\circ_{cell} = 0.0591 \times 17.5485 \approx 1.037 \text{ V} \] ### Step 9: Calculate \( E^\circ \) for \( Cu|CuS \) Now we need to find \( E^\circ \) for the reduction of \( Cu|CuS \). We know: \[ E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} \] Where \( E^\circ_{anode} = -0.34 \text{ V} \) (for \( Cu^{2+}/Cu \)). Let \( E^\circ_{cathode} = x \): \[ 1.037 = x - (-0.34) \] Thus, \[ x = 1.037 - 0.34 = 0.697 \text{ V} \] ### Final Step: Determine the sign Since we are looking for the reduction potential of \( Cu|CuS \), we take the negative: \[ E^\circ_{Cu|CuS} = -0.697 \text{ V} \] ### Conclusion The estimated \( E^\circ \) reduction for the \( Cu|CuS \) electrode is approximately: \[ \boxed{-0.697 \text{ V}} \]
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-2|28 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-3|37 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos

Similar Questions

Explore conceptually related problems

The standard potential E^(@) for the half reactions are as : Zn rarr Zn^(2+) + 2e^(-), E^(@) = 0.76V Cu rarr Cu^(2+) +2e^(-) , E^(@) = -0.34 V The standard cell voltage for the cell reaction is ? Zn +Cu^(2) rarr Zn ^(2+) +Cu

If excess of Zn is added to 1.0M solution of CuSO_(4) , find the concentration of Cu^(2+) ions at equilibrium. Given :E^(c-)._((Zn^(2+)|Zn))=-0.76V E^(c-)._(cell)=(E^(c-)._((Cu^(2+)|Cu))=0.34V

The solubility of CuS in pure water at 25^(@)C is 3.3 xx 10^(-4)g L^(-1) . Calculate K_(sp) of CuS . The accurate value of K_(sp) of CuS was found to be 8.5 xx 10^(-36) at 25^(@)C .

What is E^(c)._(red) for the reaction : Cu^(2+)+2e^(-) rarr Cu in the half cell Pt_(S^(2)|CuS|Cu) . if E^(c-)._(Cu^(2+)|Cu) is 0.34V and K_(sp) of CuS=10^(-35) ?

Calculate the standard free energy change in kJ for the reaction Cu^(+) +I^(-) to CuI Given: CuI + e to Cu+I^(-) E^(0)=-0.17V Cu^(+)+e to Cu E^(0)=0.53V

The 0.1M copper sulphate solution in which copper electrode is dipped at 25^(@)C . Calculate the electrode potential of copper electrode. [Given : E^(0) Cu^(+2)//Cu = 0.34V]

Find the equilibrium constant for the reaction Cu^(2+)+ 1n^(2+) Cu^(+) + 1n^(3+) Given that E_(CU^(2+)//CU^(+))^(@) = 0.15V, E_(In^(2+)//1n^(+)) = -0.4V E_(1n^(3+)//1n^(+))^(@) = - 0.42V

Cu^(+) ion is not stable in aqueous solution because because of dispropotionation reaction. E^(@) value of disproportionation of Cu^(+) is [E_(Cu^(2+)//Cu^(+))^(@)=+ 0.15 V, E_(Cu^(2+)//Cu)^(@)=0.34 V]

Calculate the DeltaG^(@) and equilibrium constant of the reaction at 27^(@)C Mg+ Cu^(+2) hArr Mg^(+2) + Cu E_(Mg^(2+)//Mg)^(@) = -2.37V, E_(Cu^(2+)//Cu)^(@) = +0.34V