Home
Class 11
CHEMISTRY
Given the folowing standerd electrode po...

Given the folowing standerd electrode potentials, the `K_(sp)` for `PbBr_(2)` is :
`PbBr_(2)(s)+2e^(-)toPb(s)+2Br^(-)(aq), E^(@)=-0.248 V`
`Pb^(2+)(aq)+2e^(-)toPb(s), E^(@)=-0.126 V`

A

`7.4xx10^(-5)`

B

`4.9xx10^(-14)`

C

`5.2xx10^(-6)`

D

`2.3xx10^(-13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product constant (Ksp) for lead(II) bromide (PbBr2) using the given standard electrode potentials, we can follow these steps: ### Step 1: Identify the Reactions and Their Potentials We have two reactions with their standard electrode potentials: 1. \( \text{PbBr}_2(s) + 2e^- \rightarrow \text{Pb}(s) + 2\text{Br}^-(aq) \), \( E^\circ = -0.248 \, V \) 2. \( \text{Pb}^{2+}(aq) + 2e^- \rightarrow \text{Pb}(s) \), \( E^\circ = -0.126 \, V \) ### Step 2: Determine the Oxidation and Reduction Reactions - The first reaction (with \( E^\circ = -0.248 \, V \)) is the oxidation reaction because it involves the conversion of solid PbBr2 into Pb and Br⁻ ions. - The second reaction (with \( E^\circ = -0.126 \, V \)) is the reduction reaction where Pb²⁺ ions gain electrons to form solid Pb. ### Step 3: Calculate the Standard Cell Potential (E°cell) Using the formula: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] Here, the cathode is the reduction of Pb²⁺ and the anode is the oxidation of PbBr2. \[ E^\circ_{\text{cell}} = (-0.126 \, V) - (-0.248 \, V) = -0.126 + 0.248 = 0.122 \, V \] ### Step 4: Apply the Nernst Equation The Nernst equation is given by: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log Q \] At equilibrium (for Ksp), \( E_{\text{cell}} = 0 \), and \( Q = Ksp \). So, we can rewrite the equation as: \[ 0 = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log Ksp \] ### Step 5: Substitute Values Here, \( n = 2 \) (since 2 electrons are involved). Thus: \[ 0 = 0.122 - \frac{0.0591}{2} \log Ksp \] Rearranging gives: \[ \log Ksp = \frac{0.122 \times 2}{0.0591} \] ### Step 6: Calculate log Ksp Calculating the right side: \[ \log Ksp = \frac{0.244}{0.0591} \approx 4.136 \] ### Step 7: Find Ksp Taking the antilog: \[ Ksp = 10^{-4.136} \approx 7.32 \times 10^{-5} \] ### Conclusion Thus, the Ksp for PbBr2 is approximately \( 7.32 \times 10^{-5} \). ---
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-2|28 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-3|37 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos

Similar Questions

Explore conceptually related problems

Based on data given below for the electrode potential , reducing power of Fe^(2+) , Al and Br^(-) will increase in the order Br_(2)(aq)+2e^(-)rarr2Br^(-)(aq),E^@=+1.08V Al^(3+)(aq)+3e^(-)rarrAl(s),E^@=-1.66V Fe^(3+)(aq)+e^(-2)rarrFe^(+2) (aq) , E^(@) =+0.77V

Given the listed standard electrode potentials, what is E^(@) for the cell: 4BiO^+(aq)+3N_2H_5^+(aq)to4Bi(s)3N_2(g)+4H_2O)l)+7H^+(aq) N_2(g)+5H^+(aq)+4e^(-)toN_2H_5^+(aq),E^(@)=+0.23V BiO^+(aq)+2H^+(aq)+3e^(-)toBi(s)+H_2O(l),E^(@)=+0.32V

The standard reduction potentials at 298K for the following half cells are given : ZN^(2+)(aq)+ 2e^(-)Zn(s) , E^(@) = - 0.762V Cr^(3+)(aq)+ 3e^(-) Cr(s) , E^(@) = - 0.740V 2H^(+) (aq)+2e^(-) H_(2)(g) , E^(@)= 0.000V Fe^(3+)(aq)+ e^(-) Fe^(2+)(aq) , E^(@) = 0.770V which is the strongest reducing agent ?

Consider the following half-cell reaction and associated standerd half-cell potentials and determine the maximum voltage thatr can be obtained by combination resulting in spontenous process : AuBr_(4)^(-)(aq)+3e^(-)toAu(s)+4BR^(-)(aq), E^(@)=-086V Eu^(3+)(aq)+e^(-)toEu^(2+)(aq), E^(@)=-043V Sn^(2+)(aq)+2e^(-)toSn(s), E^(@)=-0.14V IO^(-)(aq)+H_(2)O(l)+2e^(-)toI^(-)(aq)+2OH^(-), E^(@)=+0.49V

The half reactions that occur in a lead acid battery are: PbSO_(3)(s)+2e^(-)toPb(s)+SO_(4)^(2-)(aq)E^(@)=-0.36V PbO_(2)(s)+4H^(+)(aq)+SO_(4)^(2-)(aq)+2e^(-)toPbSO_(4)(s)+2H_(2)O(l)E^(@)=+1.69V Calculate the overall potential for the cell in discharging reaction, E_(cell)^(@) Give answer in nearest single digit integer.

The electrode potential, E^(@) , for the reduction of MnO_(4)^(-)" to "Mn^(2+) in acidic medium is +1.51V . Which of the following metal(s) will be oxidised? The reduction reactions and standard electrode potentials for Zn^(2+), Ag^(+) and Au^(+) are given as Zn_((aq))^(2+)+2e^(-)rarrZn_((s)),E^(@)=-0.762V Ag_((aq))^(+)+e^(-)hArr Ag_((x)), E^(@)=+0.80V Au_((aq))^(+)+e^(-)hArr Au_((s)), E^(@)=+1.69V

Using the standerd half-cell potential listed, calculate the equilibrium constant for the reaction : Co(s)+2H^(+)(aq)toCo^(2+)(aq)+H_(2)(g)" at 298 K" Co^(2+)(aq)+2e^(-)toCo(s) E^(@)=-0.277 V

From the fllowing half-cell reactions and their standard potentials ,what is the smallest possible standard e.m.f for spontaneous reactions? PO_4^(3-)(aq)+2H_2O(l)+2e^(-)toHPO_3^(2-)+3OH^(-)(aq), E^(@)=-1.05V PbO_2(s)+H_2O(l)+2e^(-)toPbO(s)+2OH^(-)(aq),E^(@)=+0.28 V

From the following information, calculate the solubility product of AgBr. AgBr(s)+e^(-) rarr Ag(s) +Br^(c-)(aq), " "E^(c-)=0.07V Ag^(o+)(aq)+e^(-) rarr Ag(s)," "E^(c-)=0.080V

From the following information, calculate the solubility product of AgBr. AgBr(s)+e^(-) rarr Ag(s) +Br^(c-)(aq), " "E^(c-)=0.07V Ag^(o+)(aq)+e^(-) rarr Ag(s)," "E^(c-)=0.080V