Home
Class 11
CHEMISTRY
Consider the following standard electrod...

Consider the following standard electrode potentials and calculate the eqillibrium constant at `25^(@)`C for the indicated disproportional reaction :
`3 Mn^(2+)(aq)toMn(s)+2Mn^(3+)(aq)`
`Mn^(3+)(aq)+e^(-)toMn^(2+)(aq), E^(@)=1.51 V`
`Mn^(2+)(aq)+2e^(-)toMn(s), E^(@)=-1.185 V``

A

`1.2xx10^(-43)`

B

`2.4xx10^(-73)`

C

`6.3xx10^(-92)`

D

`1.5xx10^(-62)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Identify the half-reactions The given disproportionation reaction is: \[ 3 \text{Mn}^{2+}(aq) \rightarrow \text{Mn}(s) + 2 \text{Mn}^{3+}(aq) \] We can break this down into two half-reactions: 1. Reduction: \[ \text{Mn}^{3+}(aq) + e^- \rightarrow \text{Mn}^{2+}(aq) \quad (E^\circ = 1.51 \, \text{V}) \] 2. Oxidation: \[ \text{Mn}^{2+}(aq) \rightarrow \text{Mn}(s) + 2e^- \quad (E^\circ = -1.185 \, \text{V}) \] ### Step 2: Adjust the half-reactions To balance the electrons in the overall reaction, we multiply the reduction half-reaction by 2: \[ 2 \text{Mn}^{3+}(aq) + 2e^- \rightarrow 2 \text{Mn}^{2+}(aq) \] Now the half-reactions are: 1. Reduction: \[ 2 \text{Mn}^{3+}(aq) + 2e^- \rightarrow 2 \text{Mn}^{2+}(aq) \quad (E^\circ = 1.51 \, \text{V}) \] 2. Oxidation: \[ 3 \text{Mn}^{2+}(aq) \rightarrow \text{Mn}(s) + 2e^- \quad (E^\circ = -1.185 \, \text{V}) \] ### Step 3: Calculate the standard cell potential The standard cell potential \( E^\circ_{\text{cell}} \) is given by: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] Here, the cathode is the reduction half-reaction and the anode is the oxidation half-reaction: \[ E^\circ_{\text{cell}} = 1.51 \, \text{V} - (-1.185 \, \text{V}) \] \[ E^\circ_{\text{cell}} = 1.51 + 1.185 = 2.695 \, \text{V} \] ### Step 4: Use the Nernst equation The Nernst equation relates the standard cell potential to the equilibrium constant: \[ E^\circ_{\text{cell}} = \frac{0.0591}{n} \log K_c \] Where: - \( n \) is the number of moles of electrons transferred. In this case, \( n = 2 \). At equilibrium, \( E_{\text{cell}} = 0 \): \[ 0 = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log K_c \] \[ \frac{0.0591}{2} \log K_c = 2.695 \] ### Step 5: Solve for \( K_c \) Rearranging gives: \[ \log K_c = \frac{2.695 \times 2}{0.0591} \] \[ \log K_c = \frac{5.39}{0.0591} \] \[ \log K_c \approx 91.201 \] Now, converting from logarithmic form to exponential form: \[ K_c = 10^{-91.201} \] \[ K_c \approx 6.3 \times 10^{-92} \] ### Final Answer The equilibrium constant \( K_c \) for the reaction at \( 25^\circ C \) is: \[ K_c \approx 6.3 \times 10^{-92} \] ---
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-2|28 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-3|37 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos

Similar Questions

Explore conceptually related problems

Use the following standard electrode potentials, calculate DeltaG^(@) in kJ // mol for the indicated reaction : 5Ce^(4+)(aq)+Mn^(2+)(aq)+4H_(2)O(l)to5Ce^(3+)(aq)+MnO_(4)^(-)(aq)+8H^(+)(aq) MnO_(4)^(-)(aq)+8H^(+)(aq)+5e^(-)toMn^(2+)(aq)+4H_(2)O(l), E^(@)=+1.51 V Ce^(4+)(aq)+e^(=)toCe^(3+)(aq)" "E^(@)=+1.61 V

calculate the value of equilibrium constant (K_f) for the reaction: Zn^(2+)(aq)+4OH^(-)(aq)iffZn(OH)_4^(2-)(aq) Given: Zn^(2+)(aq)+2e^(-)toZn(s0,E^(@)=-0.76 V Zn(OH)_4^(2-)(aq)+2e^(-)toZn(s)+4OH^(-)(aq),E^(@)=-1.36 V 2.303(RT)/F=0.06

Using the standerd half-cell potential listed, calculate the equilibrium constant for the reaction : Co(s)+2H^(+)(aq)toCo^(2+)(aq)+H_(2)(g)" at 298 K" Co^(2+)(aq)+2e^(-)toCo(s) E^(@)=-0.277 V

Consider the following half-cell reaction and associated standerd half-cell potentials and determine the maximum voltage thatr can be obtained by combination resulting in spontenous process : AuBr_(4)^(-)(aq)+3e^(-)toAu(s)+4BR^(-)(aq), E^(@)=-086V Eu^(3+)(aq)+e^(-)toEu^(2+)(aq), E^(@)=-043V Sn^(2+)(aq)+2e^(-)toSn(s), E^(@)=-0.14V IO^(-)(aq)+H_(2)O(l)+2e^(-)toI^(-)(aq)+2OH^(-), E^(@)=+0.49V

The standard electrode potential for Deniell cell is 1.1V . Calculate the standard Gibbs energy for the reaction. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq)+Cu(s)

The E^(@) at 25^(@) C for the following reaction is 0.22 V. Calculate the equilibrium constant at 25^(@) C : H_(2)(g)+2AgCl(s)to2Ag(s)+2HCl(aq)

Calculate the equilibrium constant for the reaction: Cd^(2+) (aq) +Zn(s) hArr Zn^(2+) (aq) +Cd (s) If E_(Cd^(2+)//Cd)^(Theta) = -0.403V E_(Zn^(2+)//Zn)^(Theta) = -0.763 V

Given the folowing standerd electrode potentials, the K_(sp) for PbBr_(2) is : PbBr_(2)(s)+2e^(-)toPb(s)+2Br^(-)(aq), E^(@)=-0.248 V Pb^(2+)(aq)+2e^(-)toPb(s), E^(@)=-0.126 V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V