Home
Class 12
MATHS
The integral int(1+x-1/x)e^(x+1/x)dx is...

The integral `int(1+x-1/x)e^(x+1/x)dx` is equal to (1) `(x-1)e^(x+1/x)+C` (2) `x e^(x+1/x)+C` (3) `(x+1)e^(x+1/x)+C` (4) `-x e^(x+1/x)+C`

Text Solution

AI Generated Solution

To solve the integral \( I = \int (1 + x - \frac{1}{x}) e^{x + \frac{1}{x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int (1 + x - \frac{1}{x}) e^{x + \frac{1}{x}} \, dx \] This can be separated into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos

Similar Questions

Explore conceptually related problems

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

int(x-1)\ e^(-x)\ dx is equal to x e^x+C (b) x e^x+C (c) -x e^(-x)+C (d) x e^(-x)+C

Integrate int(x*e^(x))/((1+x)^(2))dx .

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

int_- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

int(1+x-x^(- 1))e^(x+x^(- 1))dx=

int(x^(e-1)-e^(x-1))/(x^e-e^x)dx

int(1+x-x^(- 1))e^(x+x^(-1))dx=

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to