Home
Class 12
MATHS
If vec a,vec b , vec c are unit vectors ...

If `vec a,vec b , vec c` are unit vectors such that `veca + vec b+ vecc = 0` and `lambda = veca.vecb + vecb.vecc+vecc.veca `and `d = veca xx vecb + vecb xx vecc + vecc xx veca`, then `(lambda,vecd)` is

A

`(-(3)/(2), 3veccxxvecb)`

B

`((3)/(2), 3vecaxxvecc)`

C

`((3)/(2), 3vecbxxvecc)`

D

`(-(3)/(2), 3vecaxxvecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) and \( \vec{D} \) given the conditions of the unit vectors \( \vec{a}, \vec{b}, \vec{c} \) such that \( \vec{a} + \vec{b} + \vec{c} = 0 \). ### Step 1: Finding \( \lambda \) 1. Start with the equation \( \vec{a} + \vec{b} + \vec{c} = 0 \). 2. Rearranging gives us \( \vec{c} = -(\vec{a} + \vec{b}) \). 3. We know that \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, so \( |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \). 4. Now, square both sides of the equation \( \vec{a} + \vec{b} + \vec{c} = 0 \): \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 0 \] Expanding this gives: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 5. Since \( |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 = 1 \), we have: \[ 1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] Simplifying gives: \[ 3 + 2(\lambda) = 0 \quad \text{where } \lambda = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \] 6. Rearranging for \( \lambda \): \[ 2\lambda = -3 \implies \lambda = -\frac{3}{2} \] ### Step 2: Finding \( \vec{D} \) 1. The expression for \( \vec{D} \) is given by: \[ \vec{D} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] 2. Substitute \( \vec{c} = -(\vec{a} + \vec{b}) \) into the equation: \[ \vec{D} = \vec{a} \times \vec{b} + \vec{b} \times (-\vec{a} - \vec{b}) + (-\vec{a} - \vec{b}) \times \vec{a} \] 3. Expanding the terms gives: \[ \vec{D} = \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b} - \vec{a} \times \vec{a} - \vec{b} \times \vec{a} \] 4. Since the cross product of any vector with itself is zero, we have: \[ \vec{D} = \vec{a} \times \vec{b} - \vec{b} \times \vec{a} = \vec{a} \times \vec{b} + \vec{a} \times \vec{b} = 2(\vec{a} \times \vec{b}) \] 5. Therefore, we can combine the terms: \[ \vec{D} = 3(\vec{a} \times \vec{b}) \] ### Final Result Thus, we have: \[ (\lambda, \vec{D}) = \left(-\frac{3}{2}, 3(\vec{a} \times \vec{b})\right) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If vec a , vec b , and vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of veca*vecb+vecb*vecc+vecc*veca

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let f(x) be a polynomial of degree 5 such that x = pm 1 are its critic...

    Text Solution

    |

  2. If .^36C(r+1) xx (k^2-3) = 6 xx .^35Cr , then number of ordered pairs...

    Text Solution

    |

  3. If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc =...

    Text Solution

    |

  4. If z = (3+isintheta)/(4-icostheta) is purely real and theta in (pi/2,p...

    Text Solution

    |

  5. 3x + 4y = 12 sqrt2 is the tangent to the ellipse x^2/a^2 + y^2/9 = 1 t...

    Text Solution

    |

  6. The value of alpha for which 4alphaint(-1)^(2)e^(-alpha|x|)dx=5 is :

    Text Solution

    |

  7. Let alpha and beta are the roots of x^2 – x – 1 = 0 such that Pk = alp...

    Text Solution

    |

  8. Let A = [a(ij)], B=[b(ij)] are two 3 × 3 matrices such that b(ij)...

    Text Solution

    |

  9. From any point P on the line x = 2y perpendicular is drawn on y = x. L...

    Text Solution

    |

  10. Let a(1), a(2), a(3), … be a G. P. such that a(1)lt0, a(1)+a(2)=4 and ...

    Text Solution

    |

  11. if y sqrt(1-x^2) = k - x sqrt(1-y^2) and y(1/2) = -1/4, then (dy)/(dx...

    Text Solution

    |

  12. Coefficient of x^7 in (1 + x)^10 + x(1 + x)^9 + x^2 (1 + x)^8+………..+x^...

    Text Solution

    |

  13. If Q(5/3,7/3,17,3) is foot of perpendicular drawn from P(1, 0, 3) on a...

    Text Solution

    |

  14. If system of equation x + y + z = 6 x + 2y + 3z = 10 3x + 2y + l...

    Text Solution

    |

  15. If the mean and variance of eight numbers 3, 7, 9, 12, 13, 20, x and y...

    Text Solution

    |

  16. Let X = {x : 1 le x le 50, x in N} A = {x: x is multiple of 2} B = {...

    Text Solution

    |

  17. If F(x) is defined in x in (-1/3,1/3) f(x) = {((1/x)loge((1+3x)/(1-2...

    Text Solution

    |

  18. Let ABC is a triangle whose vertices are A(1, –1), B(0, 2), C(x', y') ...

    Text Solution

    |

  19. Let P(A) = 1/3 , P(B) = 1/6 where A and B are independent events then

    Text Solution

    |

  20. Let f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1, where |x| gt ...

    Text Solution

    |