Home
Class 12
MATHS
Let f(x) = {(sin (tan^(-1) x) + sin (cot...

Let `f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1`, where `|x| gt 1` and `dy/dx = 1/2 d/dx (sin^(-1) f(x))`. If `y(sqrt3) = pi/6` then `y( -sqrt3)`

A

`-(pi)/(6)`

B

`(2pi)/(3)`

C

`(pi)/(3)`

D

`(5pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Define the function \( f(x) \) We start with the function given in the problem: \[ f(x) = \left( \sin(\tan^{-1} x) + \sin(\cot^{-1} x) \right)^2 - 1 \] where \( |x| > 1 \). ### Step 2: Simplify \( \sin(\cot^{-1} x) \) Using the identity \( \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \), we can rewrite: \[ \sin(\cot^{-1} x) = \sin\left(\frac{\pi}{2} - \tan^{-1} x\right) = \cos(\tan^{-1} x) \] ### Step 3: Substitute into \( f(x) \) Now substituting back into \( f(x) \): \[ f(x) = \left( \sin(\tan^{-1} x) + \cos(\tan^{-1} x) \right)^2 - 1 \] ### Step 4: Use the Pythagorean identity Recall that \( \sin^2(\theta) + \cos^2(\theta) = 1 \). Therefore: \[ \sin(\tan^{-1} x) = \frac{x}{\sqrt{1+x^2}} \quad \text{and} \quad \cos(\tan^{-1} x) = \frac{1}{\sqrt{1+x^2}} \] Thus: \[ \sin(\tan^{-1} x) + \cos(\tan^{-1} x) = \frac{x + 1}{\sqrt{1+x^2}} \] ### Step 5: Substitute into \( f(x) \) Now we can substitute this into \( f(x) \): \[ f(x) = \left( \frac{x + 1}{\sqrt{1+x^2}} \right)^2 - 1 \] \[ = \frac{(x + 1)^2}{1 + x^2} - 1 \] \[ = \frac{(x + 1)^2 - (1 + x^2)}{1 + x^2} \] \[ = \frac{x^2 + 2x + 1 - 1 - x^2}{1 + x^2} = \frac{2x}{1 + x^2} \] ### Step 6: Find \( \frac{dy}{dx} \) From the problem, we have: \[ \frac{dy}{dx} = \frac{1}{2} \frac{d}{dx}(\sin^{-1} f(x)) \] Using the chain rule: \[ \frac{d}{dx}(\sin^{-1} f(x)) = \frac{1}{\sqrt{1 - f(x)^2}} \cdot f'(x) \] ### Step 7: Calculate \( f'(x) \) We need to find \( f'(x) \): \[ f(x) = \frac{2x}{1 + x^2} \] Using the quotient rule: \[ f'(x) = \frac{(1 + x^2)(2) - 2x(2x)}{(1 + x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1 + x^2)^2} = \frac{2 - 2x^2}{(1 + x^2)^2} = \frac{2(1 - x^2)}{(1 + x^2)^2} \] ### Step 8: Substitute \( f(x) \) and \( f'(x) \) into \( \frac{dy}{dx} \) Now substituting \( f(x) \) and \( f'(x) \) into \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} \] ### Step 9: Integrate to find \( y \) Integrating \( \frac{dy}{dx} \) gives: \[ y = \frac{1}{2} \sin^{-1} f(x) + C \] ### Step 10: Use the initial condition Given \( y(\sqrt{3}) = \frac{\pi}{6} \): \[ \frac{1}{2} \sin^{-1} f(\sqrt{3}) + C = \frac{\pi}{6} \] Calculating \( f(\sqrt{3}) \): \[ f(\sqrt{3}) = \frac{2\sqrt{3}}{1 + 3} = \frac{\sqrt{3}}{2} \] Thus: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \] So: \[ \frac{1}{2} \cdot \frac{\pi}{3} + C = \frac{\pi}{6} \] This implies \( C = 0 \). ### Step 11: Find \( y(-\sqrt{3}) \) Now, we need to find \( y(-\sqrt{3}) \): \[ y(-\sqrt{3}) = \frac{1}{2} \sin^{-1} f(-\sqrt{3}) \] Calculating \( f(-\sqrt{3}) \): \[ f(-\sqrt{3}) = \frac{-2\sqrt{3}}{1 + 3} = -\frac{\sqrt{3}}{2} \] Thus: \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \] So: \[ y(-\sqrt{3}) = \frac{1}{2} \left(-\frac{\pi}{3}\right) = -\frac{\pi}{6} \] ### Final Answer The value of \( y(-\sqrt{3}) \) is: \[ \boxed{-\frac{\pi}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(sin h^(-1)(3x))=

d/dx(cosx.sin^-1x)

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

Differentiate (a^(sin^(-1)x))^2 with respect to x :

Differentiate x^(sin^(-1)x) with respect to sin^(-1)x .

if y= (sin ^(-1)x)/(sqrt(1-x^2)) then prove that (1-x)^2) .d/dx=xy+1

Differentiate sin^(-1)\ (1)/(sqrt(x+1))

d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let ABC is a triangle whose vertices are A(1, –1), B(0, 2), C(x', y') ...

    Text Solution

    |

  2. Let P(A) = 1/3 , P(B) = 1/6 where A and B are independent events then

    Text Solution

    |

  3. Let f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1, where |x| gt ...

    Text Solution

    |

  4. f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-2x) find the inverse of the fu...

    Text Solution

    |

  5. The system of equation 3x + 4y + 5z = mu x + 2y + 3z = 1 4x + 4y...

    Text Solution

    |

  6. If y^2 = ax and x^2 = ay intersect at A & B. Area bounded by both curv...

    Text Solution

    |

  7. Let F:R to R be such that F for all x in R (2^(1+x)+2^(1-x)), F(x) and...

    Text Solution

    |

  8. Consider a function f(x) = ln ((x^2 + alpha)/(7x)) . If for the given ...

    Text Solution

    |

  9. Let f(x) = x cos^(-1)(-sin|x|), x in (-pi/2,pi/2)

    Text Solution

    |

  10. Let the line y=mx and the ellipse 2x^(2)+y^(2)=1 intersect at a point ...

    Text Solution

    |

  11. The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1 a...

    Text Solution

    |

  12. Which of the following is tautology

    Text Solution

    |

  13. Let P be a point on x^2 = 4y. The segment joining A (0,-1) and P is di...

    Text Solution

    |

  14. Mean and standard deviations of 10 observations are 20 and 2 respectiv...

    Text Solution

    |

  15. If volume of parallelopiped whose there coterminous edges are vec u = ...

    Text Solution

    |

  16. Let int (cos x dx)/((sin^3 x) (1 + sin^6 x)^(2/3)) = f(x)(1 + sin^6 x ...

    Text Solution

    |

  17. Roots of the equation x^2 + bx + 45 = 0, b in R lie on the curve |z + ...

    Text Solution

    |

  18. If y(x) is a solution of differential equation sqrt(1-x^2) dy/dx + sqr...

    Text Solution

    |

  19. lim(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

    Text Solution

    |

  20. If maximum value of .^19 Cp is a, .^20 Cq is b, .^21 Cr is c, then rel...

    Text Solution

    |