Home
Class 12
MATHS
Value of cos^3 (pi/8)cos^3 ((3pi)/8) + s...

Value of `cos^3 (pi/8)cos^3 ((3pi)/8) + sin^3 (pi/8)sin^3 ((3pi)/8)` is

A

`1/sqrt2`

B

`1/4`

C

`1/(8sqrt2)`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \cos^3\left(\frac{\pi}{8}\right) \cos^3\left(\frac{3\pi}{8}\right) + \sin^3\left(\frac{\pi}{8}\right) \sin^3\left(\frac{3\pi}{8}\right) \] ### Step 1: Rewrite \( \frac{3\pi}{8} \) We can express \( \frac{3\pi}{8} \) as \( \frac{\pi}{2} - \frac{\pi}{8} \). ### Step 2: Use Trigonometric Identities Using the identity \( \cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta) \): \[ \cos\left(\frac{3\pi}{8}\right) = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) \] ### Step 3: Rewrite \( \sin\left(\frac{3\pi}{8}\right) \) Using the identity \( \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) \): \[ \sin\left(\frac{3\pi}{8}\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos\left(\frac{\pi}{8}\right) \] ### Step 4: Substitute Back into the Expression Now we can substitute these values back into the original expression: \[ \cos^3\left(\frac{\pi}{8}\right) \sin^3\left(\frac{\pi}{8}\right) + \sin^3\left(\frac{\pi}{8}\right) \cos^3\left(\frac{\pi}{8}\right) \] This simplifies to: \[ \cos^3\left(\frac{\pi}{8}\right) \sin^3\left(\frac{\pi}{8}\right) + \sin^3\left(\frac{\pi}{8}\right) \cos^3\left(\frac{\pi}{8}\right) = 2 \cos^3\left(\frac{\pi}{8}\right) \sin^3\left(\frac{\pi}{8}\right) \] ### Step 5: Factor Out the Expression We can factor this expression: \[ 2 \cos^3\left(\frac{\pi}{8}\right) \sin^3\left(\frac{\pi}{8}\right) = 2 \left(\cos\left(\frac{\pi}{8}\right) \sin\left(\frac{\pi}{8}\right)\right)^3 \] ### Step 6: Use the Double Angle Identity Using the identity \( 2 \sin(\theta) \cos(\theta) = \sin(2\theta) \): \[ \cos\left(\frac{\pi}{8}\right) \sin\left(\frac{\pi}{8}\right) = \frac{1}{2} \sin\left(\frac{\pi}{4}\right) \] Thus: \[ 2 \cos\left(\frac{\pi}{8}\right) \sin\left(\frac{\pi}{8}\right) = \sin\left(\frac{\pi}{4}\right) \] ### Step 7: Substitute Back Now substituting back: \[ = 2 \left(\frac{1}{2} \sin\left(\frac{\pi}{4}\right)\right)^3 = 2 \left(\frac{1}{2} \cdot \frac{1}{\sqrt{2}}\right)^3 \] ### Step 8: Calculate the Final Value Calculating this gives: \[ = 2 \cdot \frac{1}{8} \cdot \frac{1}{2\sqrt{2}} = \frac{1}{8\sqrt{2}} \] ### Final Result Thus, the final value of the expression is: \[ \frac{1}{8\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

Evaluate : cos ""(pi)/(8) sin ""(pi)/(8)

The value of (1+cospi/8)(1+cos(3pi)/8)(1+cos(5pi)/8)(1+cos(7pi)/8)i s (a)1/4 (b) 3/4 (c) 1/8 (d) 3/8

What is the principal value of cos^(-1)cos((2pi)/3)+sin^(-1)sin((2pi)/3)?

What is the principal value of cos^(-1)(cos(("2pi")/3))+sin^(-1)(sin(("2pi")/3))?

Prove that: cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)""(7pi)/(8) = 3/2.

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. If normal at P on the curve y^2 - 3x^2 + y + 10 = 0 passes through the...

    Text Solution

    |

  2. The equation 2x^2 + (a - 10)x + 33/2 = 2a has real roots. Find least p...

    Text Solution

    |

  3. Value of cos^3 (pi/8)cos^3 ((3pi)/8) + sin^3 (pi/8)sin^3 ((3pi)/8) is

    Text Solution

    |

  4. The negation of 'sqrt5 is an integer or 5 is an irrational number' is

    Text Solution

    |

  5. Find the integration int dx /((x - 3)^(6/7)(x + 4)^(8/7)

    Text Solution

    |

  6. A sphere of 10cm radius has a uniform thickness of ice around it. Ice ...

    Text Solution

    |

  7. Let C be the centroid of the triangle with vertices (3, -1) (1, 3) an...

    Text Solution

    |

  8. In a bag there are 20 cards 10 names A and another 10 names B. Cards a...

    Text Solution

    |

  9. F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^...

    Text Solution

    |

  10. If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C...

    Text Solution

    |

  11. If number of 5 digit numbers which can be formed without repeating any...

    Text Solution

    |

  12. If plane x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5 in...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  15. Let the observations xi(1 le I le 10) satisfy the equations, Sigma(i=...

    Text Solution

    |

  16. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  17. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  18. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  19. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  20. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |