Home
Class 12
MATHS
F(x) = {( (sin(a+2)x + sin x)/x , x lt 0...

F(x) = `{( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):}`
Function is continuous at x = 0, find `a + 2b`.

A

`-1`

B

`0`

C

`1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( F(x) \) is continuous at \( x = 0 \). This means that the left-hand limit as \( x \) approaches 0 must equal the right-hand limit as \( x \) approaches 0, and both must equal \( F(0) \). ### Step 1: Find the left-hand limit as \( x \) approaches 0 For \( x < 0 \): \[ F(x) = \frac{\sin(a + 2x) + \sin x}{x} \] We need to find: \[ \lim_{x \to 0^-} F(x) = \lim_{x \to 0^-} \frac{\sin(a + 2x) + \sin x}{x} \] Using the Taylor series expansion for \( \sin \): \[ \sin(a + 2x) \approx \sin a + 2x \cos a \quad \text{and} \quad \sin x \approx x \] Thus, \[ \sin(a + 2x) + \sin x \approx \sin a + 2x \cos a + x = \sin a + x(2\cos a + 1) \] Now substituting this back into the limit: \[ \lim_{x \to 0^-} \frac{\sin a + x(2\cos a + 1)}{x} = \lim_{x \to 0^-} \left(\frac{\sin a}{x} + 2\cos a + 1\right) \] As \( x \to 0^- \), \( \frac{\sin a}{x} \) diverges unless \( \sin a = 0 \). Therefore, we require: \[ \sin a = 0 \implies a = n\pi \quad (n \in \mathbb{Z}) \] ### Step 2: Find the right-hand limit as \( x \) approaches 0 For \( x > 0 \): \[ F(x) = \frac{(x + 3x^2)^{1/3} - x^{1/3}}{x^{4/3}} \] We need to find: \[ \lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} \frac{(x + 3x^2)^{1/3} - x^{1/3}}{x^{4/3}} \] Factoring out \( x^{1/3} \): \[ = \lim_{x \to 0^+} \frac{x^{1/3} \left((1 + 3x)^{1/3} - 1\right)}{x^{4/3}} = \lim_{x \to 0^+} \frac{(1 + 3x)^{1/3} - 1}{x} \] Using the binomial expansion: \[ (1 + 3x)^{1/3} \approx 1 + \frac{1}{3}(3x) = 1 + x \] Thus, \[ \lim_{x \to 0^+} \frac{x}{x} = 1 \] ### Step 3: Set the limits equal to each other Since the function is continuous at \( x = 0 \), we have: \[ \lim_{x \to 0^-} F(x) = \lim_{x \to 0^+} F(x) = F(0) \] This gives us: \[ 2\cos a + 1 = b \] And since \( \sin a = 0 \), we have \( a = n\pi \). For \( n = 0 \): \[ a = 0 \implies b = 2 \cdot 1 + 1 = 3 \] ### Step 4: Calculate \( a + 2b \) Now substituting the values: \[ a + 2b = 0 + 2 \cdot 3 = 6 \] ### Final Answer: The value of \( a + 2b \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):} If f is continuous at x = 0, then (a + b + c + d) is

Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):} If f is continous at x=0 then correct statement (s) is/are:

Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):} If f is continous at x=0 then correct statement (s) is/are:

Find the value of a ,b if f(x) = {((a e^(1//|x+2|) - 1)/(2-e^(1//|x+2|)),; -3 lt x lt -2), (b,; x = -2), (sin((x^4-16)/(x^5+32)),; -2 lt x lt 0):} is continuous at x = -2.

Find k, if possible, so that f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1+ sin 3x)),,, x lt 0),(k,,, x=0),((e ^(sin 2x )-1)/(ln (1+ tan 9x)),,, x gt 0):} is continious at x=0.

Show that f(x)={(sin3x)/(tan2x),\ \ \ if\ x 0 is continuous at x=0

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x)=f(x)={(sin(a+1)x+sinx)/(x), ,x<0,c \ at x=0, (sqrt(x+b x^2)-sqrt(x))/(b xsqrt(x)),xgeq0,f(x) is continuous at x=0,t h e n (a). a=-3/2,b=0,c=1/2 (b) a=-3/2,b=1,c=-1/2 (c) a=-3/2,b in R-[0],c=1/2 (d) none of these

If f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2))sin^(-1)(1-{x}))/(sqrt(2) ({x} - {x}^(3)))",",x gt 0),(k",",x = 0),((A sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))",",x lt 0):} is continuous at x = 0, then the value of sin^(2) k + cos^(2) ((Api)/(sqrt(2))) , is..... (where {.} denotes fractional part of x).

If the function f(x)=(sin10 x)/x , x!=0 is continuous at x=0 , find f(0) .

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let C be the centroid of the triangle with vertices (3, -1) (1, 3) an...

    Text Solution

    |

  2. In a bag there are 20 cards 10 names A and another 10 names B. Cards a...

    Text Solution

    |

  3. F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^...

    Text Solution

    |

  4. If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C...

    Text Solution

    |

  5. If number of 5 digit numbers which can be formed without repeating any...

    Text Solution

    |

  6. If plane x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5 in...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  9. Let the observations xi(1 le I le 10) satisfy the equations, Sigma(i=...

    Text Solution

    |

  10. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  11. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  12. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  13. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  14. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |

  15. Find the coefficient of x^4 in (1 + x + x^2)^10

    Text Solution

    |

  16. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  17. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  18. The projection of the line segment joining the points (1, -1, 3) and (...

    Text Solution

    |

  19. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  20. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |