Home
Class 12
MATHS
If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A...

If `A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A)` and `C=3A` then `(|adj(B)|)/(|C|)` is

A

`2`

B

`16`

C

`8`

D

`72`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{|\text{adj}(B)|}{|C|}\) where \(B = \text{adj}(A)\) and \(C = 3A\). ### Step 1: Understand the properties of determinants We know that for any square matrix \(A\) of order \(n\): 1. \(|\text{adj}(A)| = |A|^{n-1}\) 2. If \(C = kA\) where \(k\) is a constant, then \(|C| = k^n |A|\) ### Step 2: Determine the order of matrix \(A\) Matrix \(A\) is given as: \[ A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix} \] This is a \(3 \times 3\) matrix, so \(n = 3\). ### Step 3: Calculate \(|B|\) Since \(B = \text{adj}(A)\), we can use the property of determinants: \[ |B| = |\text{adj}(A)| = |A|^{n-1} = |A|^{3-1} = |A|^2 \] ### Step 4: Calculate \(|C|\) Given \(C = 3A\), we apply the second property: \[ |C| = |3A| = 3^3 |A| = 27 |A| \] ### Step 5: Calculate \(|\text{adj}(B)|\) Using the property again: \[ |\text{adj}(B)| = |B|^{n-1} = |B|^{3-1} = |B|^2 \] Substituting \(|B| = |A|^2\): \[ |\text{adj}(B)| = (|A|^2)^{2} = |A|^4 \] ### Step 6: Substitute into the expression Now we can substitute \(|\text{adj}(B)|\) and \(|C|\) into our expression: \[ \frac{|\text{adj}(B)|}{|C|} = \frac{|A|^4}{27 |A|} \] This simplifies to: \[ \frac{|A|^4}{27 |A|} = \frac{|A|^3}{27} \] ### Step 7: Calculate \(|A|\) Now we need to calculate \(|A|\): \[ |A| = 1 \cdot (3 \cdot 3 - 4 \cdot (-1)) - 1 \cdot (1 \cdot 3 - 4 \cdot 1) + 2 \cdot (1 \cdot (-1) - 3 \cdot 1) \] Calculating each term: 1. First term: \(1 \cdot (9 + 4) = 13\) 2. Second term: \(-1 \cdot (3 - 4) = -1 \cdot (-1) = 1\) 3. Third term: \(2 \cdot (-1 - 3) = 2 \cdot (-4) = -8\) Adding these together: \[ |A| = 13 + 1 - 8 = 6 \] ### Step 8: Substitute \(|A|\) back into the expression Now substituting \(|A| = 6\) into our expression: \[ \frac{|A|^3}{27} = \frac{6^3}{27} = \frac{216}{27} = 8 \] ### Final Answer Thus, the final answer is: \[ \frac{|\text{adj}(B)|}{|C|} = 8 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,2,3],[1,3,4],[1,4,3]] ,verify that A(adj.A)=(adj.A)=|A|.I

If A=[[1,-2,3],[0, 2 ,-1],[ -4,5-,2]] , find A (adj A) .

3) If A=[[1,2],[3,4]] ,verify that A(adj A)=(adj A)A=|A|I .

If A=[[1,2],[2,1]] then adj A=

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

2) If A=[[-1,5],[-3,2]] then adj A=

If A=[[1 ,2,-3],[ 5, 0, 2],[ 1,-1, 1]], B=[[3,-1, 2],[ 4, 2 ,5],[ 2, 0, 3]] and C=[[4, 1, 2],[ 0, 3, 2],[ 1,-2, 3]] , then compute (A+B) and (B - C) . Also, verify that A + (B - C) = (A + B) - C .

If A=[[1, 1,-1],[ 2, 0, 3],[ 3,-1, 2]] , B=[[1, 3],[0,2],[-1, 4]] and C=[[1,2, 3,-4],[ 2, 0,-2, 1]] , find A(BC), (AB)C and show that (A B)C = A(B C) .

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,-2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. In a bag there are 20 cards 10 names A and another 10 names B. Cards a...

    Text Solution

    |

  2. F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^...

    Text Solution

    |

  3. If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C...

    Text Solution

    |

  4. If number of 5 digit numbers which can be formed without repeating any...

    Text Solution

    |

  5. If plane x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5 in...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  8. Let the observations xi(1 le I le 10) satisfy the equations, Sigma(i=...

    Text Solution

    |

  9. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  10. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  11. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  12. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  13. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |

  14. Find the coefficient of x^4 in (1 + x + x^2)^10

    Text Solution

    |

  15. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  16. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  17. The projection of the line segment joining the points (1, -1, 3) and (...

    Text Solution

    |

  18. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  19. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |

  20. Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2...

    Text Solution

    |