Home
Class 12
MATHS
If plane x + 4y - 2z = 1, x + 7y – 5z =...

If plane `x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5` intersects in a line `(R xx R xx R)` then `alpha + beta` is equal to

A

`2`

B

`10`

C

`0`

D

`-10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha \) and \( \beta \) such that the three given planes intersect in a line. This condition is satisfied when the determinant of the coefficients of the variables \( x, y, z \) is equal to zero. ### Step-by-Step Solution: 1. **Write the equations of the planes:** \[ \begin{align*} \text{Plane 1:} & \quad x + 4y - 2z = 1 \\ \text{Plane 2:} & \quad x + 7y - 5z = \beta \\ \text{Plane 3:} & \quad x + 5y + \alpha z = 5 \end{align*} \] 2. **Set up the determinant of the coefficients:** The coefficients of \( x, y, z \) from the three planes can be arranged in a matrix: \[ \begin{vmatrix} 1 & 4 & -2 \\ 1 & 7 & -5 \\ 1 & 5 & \alpha \end{vmatrix} \] 3. **Calculate the determinant:** The determinant can be calculated using the formula for a 3x3 matrix: \[ D = 1 \begin{vmatrix} 7 & -5 \\ 5 & \alpha \end{vmatrix} - 4 \begin{vmatrix} 1 & -5 \\ 1 & \alpha \end{vmatrix} - 2 \begin{vmatrix} 1 & 7 \\ 1 & 5 \end{vmatrix} \] Now calculate each of the 2x2 determinants: \[ \begin{vmatrix} 7 & -5 \\ 5 & \alpha \end{vmatrix} = 7\alpha + 25 \] \[ \begin{vmatrix} 1 & -5 \\ 1 & \alpha \end{vmatrix} = \alpha + 5 \] \[ \begin{vmatrix} 1 & 7 \\ 1 & 5 \end{vmatrix} = -2 \] Substitute these back into the determinant: \[ D = 1(7\alpha + 25) - 4(\alpha + 5) - 2(-2) \] \[ D = 7\alpha + 25 - 4\alpha - 20 + 4 \] \[ D = (7\alpha - 4\alpha) + (25 - 20 + 4) = 3\alpha + 9 \] 4. **Set the determinant equal to zero:** Since the planes intersect in a line, we set the determinant to zero: \[ 3\alpha + 9 = 0 \] \[ 3\alpha = -9 \quad \Rightarrow \quad \alpha = -3 \] 5. **Now find the value of \( \beta \):** We replace the third column of the determinant with the constants from the equations: \[ \begin{vmatrix} 1 & 4 & 1 \\ 1 & 7 & \beta \\ 1 & 5 & 5 \end{vmatrix} \] Calculate this determinant: \[ D' = 1 \begin{vmatrix} 7 & \beta \\ 5 & 5 \end{vmatrix} - 4 \begin{vmatrix} 1 & \beta \\ 1 & 5 \end{vmatrix} + 1 \begin{vmatrix} 1 & 7 \\ 1 & 5 \end{vmatrix} \] \[ = 1(7 \cdot 5 - 5 \cdot \beta) - 4(5 - \beta) + (-2) \] \[ = 35 - 5\beta - 20 + 4\beta - 2 \] \[ = -\beta + 13 \] Set this determinant equal to zero: \[ -\beta + 13 = 0 \quad \Rightarrow \quad \beta = 13 \] 6. **Calculate \( \alpha + \beta \):** \[ \alpha + \beta = -3 + 13 = 10 \] ### Final Answer: \[ \alpha + \beta = 10 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

The planes 2x + 5y + 3z = 0, x-y+4z = 2 and7y-5z + 4 = 0

Add the following: (i) x – 3y – 2z , 5x + 7y – 8z , 3x – 2y + 5z

If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + alphaz = beta has infinitely many solution, then beta - alpha equals

x+y-ln(x+y)=2x+5 has a vertical tangent at the point (alpha,beta) then alpha+beta is equal to

Add : 8x - 3y + 7z, -4x + 5y - 4z, -x - y - 2z

Image of line (x - 2)/3 = (y - 1)/1 = (z - 1)/(-4) in the plane x + y + z = 7 is

The lines x + y + z - 3 = 0 = 2x - y + 5z - 6 and x - y - z + 1 = 0 = 2x + 3y + 7z - k are coplanar then k equals

Let the equation of a line through (3, 6, -2) and parallel to the planes x-y+2z=5 and 3x+y+2z=6 is L=0 . If point (alpha,beta, 2) satisfy L=0 , then alpha+2beta is equal to

If the point (2 , alpha , beta) lies on the plane which passes through the points (3,4,2) and (7,0,6) and is perpendicular to the plane 2x-5y=15, then 2 alpha - 3 beta is equal to:

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) = alpha e^(beta) . Then, |alpha + beta| is equal to.......

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C...

    Text Solution

    |

  2. If number of 5 digit numbers which can be formed without repeating any...

    Text Solution

    |

  3. If plane x + 4y - 2z = 1, x + 7y – 5z = beta, x + 5y + alphaz = 5 in...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  6. Let the observations xi(1 le I le 10) satisfy the equations, Sigma(i=...

    Text Solution

    |

  7. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  8. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  9. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  10. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  11. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |

  12. Find the coefficient of x^4 in (1 + x + x^2)^10

    Text Solution

    |

  13. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  14. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  15. The projection of the line segment joining the points (1, -1, 3) and (...

    Text Solution

    |

  16. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  17. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |

  18. Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2...

    Text Solution

    |

  19. If (dx)/dy = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

    Text Solution

    |

  20. If minimum value of term free from xx for (x/(sintheta) + 1/(xcostheta...

    Text Solution

    |