Home
Class 12
MATHS
Let the observations xi(1 le I le 10) sa...

Let the observations `x_i(1 le I le 10)` satisfy the equations, `Sigma_(i=1)^(10)(x_i-5)=10` and `Sigma_(i=1)^(10) (x_i-5)^2=40`. If `mu` and `lamda` are the mean and the variance of the observations, `x_1-3, x_2-3, …, -3, ` then the ordered pair `(mu, lamda)` is equal to :

A

`(3,3)`

B

`(6, 3)`

C

`(6,6)`

D

`(3, 6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mean (μ) and variance (λ) of the observations \( x_1 - 3, x_2 - 3, \ldots, x_{10} - 3 \) given the conditions on the observations \( x_i \). ### Step 1: Find \( \Sigma_{i=1}^{10} x_i \) We are given the equation: \[ \Sigma_{i=1}^{10} (x_i - 5) = 10 \] This can be rewritten as: \[ \Sigma_{i=1}^{10} x_i - 50 = 10 \] So, \[ \Sigma_{i=1}^{10} x_i = 10 + 50 = 60 \] **Hint:** Remember to isolate \( \Sigma_{i=1}^{10} x_i \) by moving constants to the other side of the equation. ### Step 2: Find \( \Sigma_{i=1}^{10} x_i^2 \) We are also given: \[ \Sigma_{i=1}^{10} (x_i - 5)^2 = 40 \] Expanding this, we have: \[ \Sigma_{i=1}^{10} (x_i^2 - 10x_i + 25) = 40 \] This simplifies to: \[ \Sigma_{i=1}^{10} x_i^2 - 10\Sigma_{i=1}^{10} x_i + 250 = 40 \] Substituting \( \Sigma_{i=1}^{10} x_i = 60 \): \[ \Sigma_{i=1}^{10} x_i^2 - 10(60) + 250 = 40 \] This gives: \[ \Sigma_{i=1}^{10} x_i^2 - 600 + 250 = 40 \] Thus, \[ \Sigma_{i=1}^{10} x_i^2 - 350 = 40 \] So, \[ \Sigma_{i=1}^{10} x_i^2 = 390 \] **Hint:** When expanding the square, remember to distribute each term correctly and combine like terms. ### Step 3: Calculate the Mean \( \mu \) The mean of the observations \( x_i - 3 \) is given by: \[ \mu = \frac{\Sigma_{i=1}^{10} (x_i - 3)}{10} = \frac{\Sigma_{i=1}^{10} x_i - 30}{10} \] Substituting \( \Sigma_{i=1}^{10} x_i = 60 \): \[ \mu = \frac{60 - 30}{10} = \frac{30}{10} = 3 \] **Hint:** When calculating the mean, remember to adjust for the constant you are subtracting from each observation. ### Step 4: Calculate the Variance \( \lambda \) The variance is calculated as: \[ \lambda = \frac{\Sigma_{i=1}^{10} (x_i - 3)^2}{10} = \frac{\Sigma_{i=1}^{10} (x_i^2 - 6x_i + 9)}{10} \] This expands to: \[ \lambda = \frac{\Sigma_{i=1}^{10} x_i^2 - 6\Sigma_{i=1}^{10} x_i + 90}{10} \] Substituting the known values: \[ \lambda = \frac{390 - 6(60) + 90}{10} \] Calculating this gives: \[ \lambda = \frac{390 - 360 + 90}{10} = \frac{120}{10} = 12 \] **Hint:** When calculating variance, ensure to include the constant adjustments and simplify step by step. ### Final Result Thus, the ordered pair \( (μ, λ) \) is: \[ (3, 12) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

For a sample size of 10 observations x_(1), x_(2),...... x_(10) , if Sigma_(i=1)^(10)(x_(i)-5)^(2)=350 and Sigma_(i=1)^(10)(x_(i)-2)=60 , then the variance of x_(i) is

A data consists of n observations : x_(1), x_(2),……, x_(n) . If Sigma_(i=1)^(n)(x_(i)+1)^(2)=11n and Sigma_(i=1)^(n)(x_(i)-1)^(2)=7n , then the variance of this data is

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. about to only mathematics

    Text Solution

    |

  2. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  3. Let the observations xi(1 le I le 10) satisfy the equations, Sigma(i=...

    Text Solution

    |

  4. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  5. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  6. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  7. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  8. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |

  9. Find the coefficient of x^4 in (1 + x + x^2)^10

    Text Solution

    |

  10. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  11. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  12. The projection of the line segment joining the points (1, -1, 3) and (...

    Text Solution

    |

  13. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  14. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |

  15. Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2...

    Text Solution

    |

  16. If (dx)/dy = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

    Text Solution

    |

  17. If minimum value of term free from xx for (x/(sintheta) + 1/(xcostheta...

    Text Solution

    |

  18. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  19. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  20. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |