Home
Class 12
MATHS
If f'(x) = tan^(-1)(Sec x + tan x), x in...

If `f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2)` and `f(0) = 0` then the value of `f(1)` is

A

`1/4`

B

`(pi-1)/4`

C

`(pi+1)/4`

D

`(pi+2)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that \( f'(x) = \tan^{-1}(\sec x + \tan x) \) and \( f(0) = 0 \). We will integrate \( f'(x) \) to find \( f(x) \) and then evaluate \( f(1) \). ### Step-by-step Solution: 1. **Start with the derivative**: \[ f'(x) = \tan^{-1}(\sec x + \tan x) \] 2. **Simplify \( \sec x + \tan x \)**: Recall that: \[ \sec x = \frac{1}{\cos x}, \quad \tan x = \frac{\sin x}{\cos x} \] Therefore, \[ \sec x + \tan x = \frac{1 + \sin x}{\cos x} \] 3. **Use the identity for \( \tan^{-1} \)**: We can express \( \tan^{-1}(\sec x + \tan x) \) as: \[ f'(x) = \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right) \] 4. **Integrate \( f'(x) \)**: To find \( f(x) \), we need to integrate \( f'(x) \): \[ f(x) = \int \tan^{-1}(\sec x + \tan x) \, dx \] 5. **Recognize the integral**: We can use the formula: \[ \int \tan^{-1}(u) \, du = u \tan^{-1}(u) - \frac{1}{2} \ln(1 + u^2) + C \] where \( u = \sec x + \tan x \). 6. **Find \( du \)**: The derivative of \( u \): \[ du = (\sec x \tan x + \sec^2 x) \, dx \] 7. **Integrate**: After substituting and simplifying, we find: \[ f(x) = \frac{\pi}{4} x + \frac{x^2}{4} + C \] 8. **Use the initial condition**: Given \( f(0) = 0 \): \[ f(0) = \frac{\pi}{4} \cdot 0 + \frac{0^2}{4} + C = 0 \implies C = 0 \] Thus, \[ f(x) = \frac{\pi}{4} x + \frac{x^2}{4} \] 9. **Evaluate \( f(1) \)**: Now we calculate \( f(1) \): \[ f(1) = \frac{\pi}{4} \cdot 1 + \frac{1^2}{4} = \frac{\pi}{4} + \frac{1}{4} \] 10. **Final answer**: Therefore, the value of \( f(1) \) is: \[ f(1) = \frac{\pi + 1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a si

A function y=f(x) satisfies A function y=f(x) satisfies f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2 and f(1)=0 . The value of f(1/2) then

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f:[0,(pi)/(2)]toR be continuous and satisfy f'(x)=(1)/(1+cosx) for all x in(0,(pi)/(2)) . If f(0)=3 then f((pi)/(2)) has the value equal to :

If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1) , then value of f (0) is

f(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) If f : R-(2n +1) pi/2 to R then f (x) be a :

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

    Text Solution

    |

  2. Let the observations xi(1 le I le 10) satisfy the equations, Sigma(i=...

    Text Solution

    |

  3. If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 t...

    Text Solution

    |

  4. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  5. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  6. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  7. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |

  8. Find the coefficient of x^4 in (1 + x + x^2)^10

    Text Solution

    |

  9. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  10. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  11. The projection of the line segment joining the points (1, -1, 3) and (...

    Text Solution

    |

  12. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  13. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |

  14. Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2...

    Text Solution

    |

  15. If (dx)/dy = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

    Text Solution

    |

  16. If minimum value of term free from xx for (x/(sintheta) + 1/(xcostheta...

    Text Solution

    |

  17. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  18. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  19. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  20. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |