Home
Class 12
MATHS
If f(x) = a + bx + cx^2 where a, b, c in...

If `f(x) = a + bx + cx^2` where `a, b, c in R` then `int_o ^1 f(x)dx`

A

`1/3{f(0) + f(1) +2f(1/2)}`

B

`1/6{f(0)+f(1)+4f(1/2)}`

C

`1/6{f(0)+f(1)-4f(1/2)}`

D

`1/6{f(0)-f(1)-4f(1/2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the function \( f(x) = a + bx + cx^2 \) from 0 to 1. Let's go through the steps systematically. ### Step 1: Define the function We are given the function: \[ f(x) = a + bx + cx^2 \] ### Step 2: Set up the integral We need to evaluate the integral: \[ \int_0^1 f(x) \, dx = \int_0^1 (a + bx + cx^2) \, dx \] ### Step 3: Break down the integral We can break this integral into three parts: \[ \int_0^1 f(x) \, dx = \int_0^1 a \, dx + \int_0^1 bx \, dx + \int_0^1 cx^2 \, dx \] ### Step 4: Evaluate each integral 1. **First Integral**: \[ \int_0^1 a \, dx = a \cdot [x]_0^1 = a \cdot (1 - 0) = a \] 2. **Second Integral**: \[ \int_0^1 bx \, dx = b \cdot \left[\frac{x^2}{2}\right]_0^1 = b \cdot \left(\frac{1^2}{2} - \frac{0^2}{2}\right) = b \cdot \frac{1}{2} = \frac{b}{2} \] 3. **Third Integral**: \[ \int_0^1 cx^2 \, dx = c \cdot \left[\frac{x^3}{3}\right]_0^1 = c \cdot \left(\frac{1^3}{3} - \frac{0^3}{3}\right) = c \cdot \frac{1}{3} = \frac{c}{3} \] ### Step 5: Combine the results Now, we can combine the results from the three integrals: \[ \int_0^1 f(x) \, dx = a + \frac{b}{2} + \frac{c}{3} \] ### Step 6: Final result Thus, the value of the integral is: \[ \int_0^1 f(x) \, dx = a + \frac{b}{2} + \frac{c}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f:[0,5] -> [0,5) be an invertible function defined by f(x) = ax^2 + bx + C, where a, b, c in R, abc != 0, then one of the root of the equation cx^2 + bx + a = 0 is:

Let f:[0,5] -> [0,5) be an invertible function defined by f(x) = ax^2 + bx + C, where a, b, c in R, abc != 0, then one of the root of the equation cx^2 + bx + a = 0 is:

If f(x) = a + bx + cx^(2) where c > 0 and b^(2) - 4ac < 0 . Then the area enclosed by the coordinate axes,the line x = 2 and the curve y = f(x) is given by

Let f(x) = ax^(3) + bx^(2) + cx + d, a != 0 , where a, b, c, d in R . If f(x) is one-one and onto, then which of the following is correct ?

Let f(x)=ax^(5)+bx^(4)+cx^(3)+dx^(2)+ ex , where a,b,c,d,e in R and f(x)=0 has a positive root. alpha . Then,

if f ((x- 4 ) /(x + 2 )) = 2 x + 1 , (x in R - { 1, - 2 }) , then int f(x) dx is equal to : (where C is constant of integration)

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

Statement-1: int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1 Statement-2: If f(x) and g(x) are continuous on [a,b], then int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x) for some c in (a,b) .

If 2a , b , 2c are in A.P. where a , b , c are R^(+) , then the expression f(x)=(ax^(2)-bx+c) has

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. If e1 and e2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - ...

    Text Solution

    |

  2. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  3. If f(x) = a + bx + cx^2 where a, b, c in R then into ^1 f(x)dx

    Text Solution

    |

  4. If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj...

    Text Solution

    |

  5. Find the coefficient of x^4 in (1 + x + x^2)^10

    Text Solution

    |

  6. Find the number of solution of log(1/2) |sinx| = 2 - log(1/2) |cosx|, ...

    Text Solution

    |

  7. If for x ge 0, y = (x) is the solution of the differential equation, ...

    Text Solution

    |

  8. The projection of the line segment joining the points (1, -1, 3) and (...

    Text Solution

    |

  9. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  10. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |

  11. Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2...

    Text Solution

    |

  12. If (dx)/dy = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

    Text Solution

    |

  13. If minimum value of term free from xx for (x/(sintheta) + 1/(xcostheta...

    Text Solution

    |

  14. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  15. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  16. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  17. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |

  18. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't ...

    Text Solution

    |

  19. Let an be the n^(th) term, of a G.P of postive terms. If Sigma(n=1)^...

    Text Solution

    |

  20. If lim(x rarr 0)x[4/x]= A, then the value of x at which f(x) = [x^2]si...

    Text Solution

    |