Home
Class 12
MATHS
If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[...

If `f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]|` and `a - 2b + c = 1` then

A

f(50)=1

B

f(-50)=501

C

f(50)=-501

D

f(-50)=-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will evaluate the determinant and apply the given condition \( a - 2b + c = 1 \). ### Step 1: Write the determinant We start with the determinant: \[ f(x) = \begin{vmatrix} x + a & x + 2 & x + 1 \\ x + b & x + 3 & x + 2 \\ x + c & x + 4 & x + 3 \end{vmatrix} \] ### Step 2: Apply row operations We will perform the row operation \( R_1 \rightarrow R_1 + R_3 - 2R_2 \): \[ R_1 = (x + a) + (x + c) - 2(x + b) = (x + a + x + c - 2x - 2b) = a - 2b + c \] For the second column: \[ R_1 = (x + 2) + (x + 4) - 2(x + 3) = (x + 2 + x + 4 - 2x - 6) = 0 \] For the third column: \[ R_1 = (x + 1) + (x + 3) - 2(x + 2) = (x + 1 + x + 3 - 2x - 4) = 0 \] Now, the determinant looks like: \[ f(x) = \begin{vmatrix} a - 2b + c & 0 & 0 \\ x + b & x + 3 & x + 2 \\ x + c & x + 4 & x + 3 \end{vmatrix} \] ### Step 3: Substitute the condition Given \( a - 2b + c = 1 \), we can substitute this into the determinant: \[ f(x) = \begin{vmatrix} 1 & 0 & 0 \\ x + b & x + 3 & x + 2 \\ x + c & x + 4 & x + 3 \end{vmatrix} \] ### Step 4: Expand the determinant Since the first row has two zeros, we can expand the determinant along the first row: \[ f(x) = 1 \cdot \begin{vmatrix} x + 3 & x + 2 \\ x + 4 & x + 3 \end{vmatrix} \] Calculating this 2x2 determinant: \[ = (x + 3)(x + 3) - (x + 2)(x + 4) = (x + 3)^2 - (x^2 + 6x + 8) \] \[ = (x^2 + 6x + 9) - (x^2 + 6x + 8) = 1 \] Thus, we have: \[ f(x) = 1 \] ### Step 5: Conclusion Since \( f(x) = 1 \) for all \( x \), it is a constant function. Therefore, regardless of the value of \( x \), \( f(x) \) will always equal 1. ### Final Answer The correct option is \( f(50) = 1 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b ,\ c are in A.P.

If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c)^3,1]| then f'(x)=lambda|[(x-a)^4,(x-a)^2,1] , [(x-b)^4, (x-b)^2, 1] , [(x-c)^4, (x-c)^2,1]| . Find the value of lambda

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b],[ x^2+a,0,x^2+c],[ x^4+b, x-c,0]| is a. c b. a c. b d. 0

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

If f(x) = x^(3) + a x^(2) + b x + c has a maximum at x = -1 and minimum at x = 3. Find a + b.

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

If f(x)=|(x+c_1,x+a,x+a),(x+b,x+c_2,x+a),(x+b,x+b,x+c_3)| then show that f(x) is linear in x. Hence deduce f(0)= (bg(a)-ag(b))/((b-a)) where g(x)=(c_1-x)(c_2-x)(c_3-x)

If f(x)={x ,xlt=1,x^2+b x+c ,x >1' 'find b and c if function is continuous and differentiable at x=1

If f(x)={(x^2+1,x>=1),(3x-1,x 1) f(x) is (a) 2 (b) - 2 (c) 1 (d) - 1

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a], [x+3,x+4,x+2b], [x+4,x+5,x+2c]| is(A) 0 (B) 1 (C) x (D) 2x

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  2. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  3. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  4. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |

  5. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't ...

    Text Solution

    |

  6. Let an be the n^(th) term, of a G.P of postive terms. If Sigma(n=1)^...

    Text Solution

    |

  7. If lim(x rarr 0)x[4/x]= A, then the value of x at which f(x) = [x^2]si...

    Text Solution

    |

  8. Let one end of focal chord of parabola y^2 = 8x is (1/2, -2), then equ...

    Text Solution

    |

  9. If 10 different balls are to be placed in 4 distinct boxes at random, ...

    Text Solution

    |

  10. If p rarr (p wedge ~ q) is false. Truth value of p & q will be

    Text Solution

    |

  11. Let A = {x : |x| lt 2} and B = {x : |x - 2| ge 3} then

    Text Solution

    |

  12. Let x + 6y = 8 is tangent to standard ellipse where minor axis is 4/sq...

    Text Solution

    |

  13. Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be defind...

    Text Solution

    |

  14. Let both root of equation ax^2 - 2bx + 5 = 0 are α and root of equatio...

    Text Solution

    |

  15. If f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1} an...

    Text Solution

    |

  16. If the distance between the plane 23x-10y-2z+48 =0 and the plane cont...

    Text Solution

    |

  17. Let veca, vecb and vecc be three vectors such that |veca |=sqrt(3), |...

    Text Solution

    |

  18. If .^25 C0 + 5 .^25 C1 + 9 .^25 C2 .... 101 .^25 C25 = 2^(25) k find k...

    Text Solution

    |

  19. Find the number of terms common to the two A.P. s : 3,7,11 , 407a n d...

    Text Solution

    |

  20. If the curves x^2-6x+y^2+8=0 and x^2-8y+y^2+16 -k =0 , (k gt 0) touch...

    Text Solution

    |