Home
Class 12
MATHS
Let an be the n^(th) term, of a G.P of ...

Let `a_n` be the `n^(th)` term, of a G.P of postive terms. If `Sigma_(n=1)^(100)a_(2n+1)= 200` and
` Sigma_(n=1)^(100)a_(2n)=100, " then" Sigma_(n=1)^(200)a_(n)`

A

150

B

225

C

300

D

175

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( \Sigma_{n=1}^{200} a_n \) given the sums \( \Sigma_{n=1}^{100} a_{2n+1} = 200 \) and \( \Sigma_{n=1}^{100} a_{2n} = 100 \). ### Step 1: Express the terms of the G.P. Let the first term of the G.P. be \( a \) and the common ratio be \( r \). The terms of the G.P. can be expressed as: - \( a_1 = a \) - \( a_2 = ar \) - \( a_3 = ar^2 \) - \( a_4 = ar^3 \) - ... - \( a_n = ar^{n-1} \) ### Step 2: Rewrite the given sums The sum \( \Sigma_{n=1}^{100} a_{2n+1} \) can be rewritten as: \[ \Sigma_{n=1}^{100} a_{2n+1} = a_3 + a_5 + a_7 + \ldots + a_{201} = ar^2 + ar^4 + ar^6 + \ldots + ar^{200} \] This is a G.P. with first term \( ar^2 \) and common ratio \( r^2 \) for 100 terms. The sum can be calculated using the formula for the sum of a G.P.: \[ \Sigma_{n=1}^{100} a_{2n+1} = ar^2 \frac{(r^2)^{100} - 1}{r^2 - 1} = 200 \] The sum \( \Sigma_{n=1}^{100} a_{2n} \) can be rewritten as: \[ \Sigma_{n=1}^{100} a_{2n} = a_2 + a_4 + a_6 + \ldots + a_{200} = ar + ar^3 + ar^5 + \ldots + ar^{199} \] This is also a G.P. with first term \( ar \) and common ratio \( r^2 \) for 100 terms. The sum can be calculated as: \[ \Sigma_{n=1}^{100} a_{2n} = ar \frac{(r^2)^{100} - 1}{r^2 - 1} = 100 \] ### Step 3: Set up the equations Now we have two equations: 1. \( ar^2 \frac{r^{200} - 1}{r^2 - 1} = 200 \) (Equation 1) 2. \( ar \frac{r^{200} - 1}{r^2 - 1} = 100 \) (Equation 2) ### Step 4: Divide the equations Dividing Equation 1 by Equation 2: \[ \frac{ar^2}{ar} = \frac{200}{100} \] This simplifies to: \[ r = 2 \] ### Step 5: Substitute \( r \) back into one of the equations Substituting \( r = 2 \) into Equation 2: \[ a(2) \frac{(2^2)^{100} - 1}{2^2 - 1} = 100 \] This simplifies to: \[ 2a \frac{2^{200} - 1}{3} = 100 \] \[ 2a (2^{200} - 1) = 300 \] \[ a (2^{200} - 1) = 150 \] ### Step 6: Find \( \Sigma_{n=1}^{200} a_n \) Now we can find \( \Sigma_{n=1}^{200} a_n \): \[ \Sigma_{n=1}^{200} a_n = a + ar + ar^2 + \ldots + ar^{199} \] This is a G.P. with first term \( a \) and common ratio \( r \) for 200 terms: \[ \Sigma_{n=1}^{200} a_n = a \frac{r^{200} - 1}{r - 1} \] Substituting \( r = 2 \): \[ \Sigma_{n=1}^{200} a_n = a \frac{2^{200} - 1}{2 - 1} = a (2^{200} - 1) \] Using \( a (2^{200} - 1) = 150 \): \[ \Sigma_{n=1}^{200} a_n = 150 \] ### Final Answer Thus, the value of \( \Sigma_{n=1}^{200} a_n \) is \( \boxed{150} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

Let a_n be the nth therm of a G.P of positive numbers .Let Sigma_(n=1)^(100) a_(2n)=alpha and Sigma_(n=1)^(100)a_(an-1)=beta then the common ratio is

Let a_n is a positive term of a GP and sum_(n=1)^100 a_(2n + 1)= 200, sum_(n=1)^100 a_(2n) = 200 , find sum_(n=1)^200 a_(2n) = ?

Let a_n be the nth term of a G.P. of positive numbers. Let sum_(n=1)^(100)a_(2n)=alpha and sum_(n=1)^(100)a_(2n-1)=beta , such that alpha!=beta , then the common ratio is (a) alpha//beta b. beta//alpha c. sqrt(alpha//beta) d. sqrt(beta//alpha)

Let a_n be the nth term of a G.P. of positive numbers. Let sum_(n=1)^(100)a_(2n)=alphaa n dsum_(n=1)^(100)a_(2n-1)=beta , such that alpha!=beta , then the common ratio is alpha//beta b. beta//alpha c. sqrt(alpha//beta) d. sqrt(beta//alpha)

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

Let a_(n) be the nth term of an AP, if sum_(r=1)^(100)a_(2r)= alpha " and "sum_(r=1)^(100)a_(2r-1)=beta , then the common difference of the AP is

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

The sum of series Sigma_(n=1)^(oo) (2n)/(2n+1)! is

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  2. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  3. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  4. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |

  5. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't ...

    Text Solution

    |

  6. Let an be the n^(th) term, of a G.P of postive terms. If Sigma(n=1)^...

    Text Solution

    |

  7. If lim(x rarr 0)x[4/x]= A, then the value of x at which f(x) = [x^2]si...

    Text Solution

    |

  8. Let one end of focal chord of parabola y^2 = 8x is (1/2, -2), then equ...

    Text Solution

    |

  9. If 10 different balls are to be placed in 4 distinct boxes at random, ...

    Text Solution

    |

  10. If p rarr (p wedge ~ q) is false. Truth value of p & q will be

    Text Solution

    |

  11. Let A = {x : |x| lt 2} and B = {x : |x - 2| ge 3} then

    Text Solution

    |

  12. Let x + 6y = 8 is tangent to standard ellipse where minor axis is 4/sq...

    Text Solution

    |

  13. Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be defind...

    Text Solution

    |

  14. Let both root of equation ax^2 - 2bx + 5 = 0 are α and root of equatio...

    Text Solution

    |

  15. If f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1} an...

    Text Solution

    |

  16. If the distance between the plane 23x-10y-2z+48 =0 and the plane cont...

    Text Solution

    |

  17. Let veca, vecb and vecc be three vectors such that |veca |=sqrt(3), |...

    Text Solution

    |

  18. If .^25 C0 + 5 .^25 C1 + 9 .^25 C2 .... 101 .^25 C25 = 2^(25) k find k...

    Text Solution

    |

  19. Find the number of terms common to the two A.P. s : 3,7,11 , 407a n d...

    Text Solution

    |

  20. If the curves x^2-6x+y^2+8=0 and x^2-8y+y^2+16 -k =0 , (k gt 0) touch...

    Text Solution

    |