Home
Class 12
MATHS
Let a function f: [0,5] rarr R be contin...

Let a function f: `[0,5] rarr R` be continuous , f(1) =3 and F be definded as : `F(x)=int_(1)^(x)t^2 g(t)dt,` where `g(t) = int_(1)^(t)f(u)du.`
Then for the function F, the point x=1 is

A

a point of local minima ,

B

not a critical point.

C

a point of indflection.

D

a point of local maxima

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( F(x) \) and its derivatives to determine the nature of the point \( x = 1 \). ### Step 1: Define the functions We are given: - \( f: [0, 5] \to \mathbb{R} \) is continuous and \( f(1) = 3 \). - \( g(t) = \int_1^t f(u) \, du \). - \( F(x) = \int_1^x t^2 g(t) \, dt \). ### Step 2: Differentiate \( F(x) \) To analyze the behavior of \( F(x) \) at \( x = 1 \), we need to find the first derivative \( F'(x) \) using the Fundamental Theorem of Calculus and the product rule: \[ F'(x) = x^2 g(x). \] ### Step 3: Evaluate \( F'(1) \) Now, we evaluate \( F'(1) \): \[ F'(1) = 1^2 g(1) = g(1). \] Next, we need to find \( g(1) \): \[ g(1) = \int_1^1 f(u) \, du = 0. \] Thus, we have: \[ F'(1) = 0. \] ### Step 4: Differentiate \( F'(x) \) to find \( F''(x) \) Since \( F'(1) = 0 \), we need to check the second derivative \( F''(x) \) to determine the nature of the critical point: \[ F''(x) = 2x g(x) + x^2 g'(x). \] ### Step 5: Evaluate \( F''(1) \) Now, we evaluate \( F''(1) \): \[ F''(1) = 2 \cdot 1 \cdot g(1) + 1^2 g'(1) = 0 + g'(1) = g'(1). \] To find \( g'(1) \), we differentiate \( g(t) \): \[ g'(t) = f(t). \] Thus, \[ g'(1) = f(1) = 3. \] Therefore, \[ F''(1) = 3. \] ### Step 6: Determine the nature of the critical point Since \( F'(1) = 0 \) and \( F''(1) > 0 \), this indicates that \( x = 1 \) is a local minimum for the function \( F(x) \). ### Conclusion The point \( x = 1 \) is a local minimum for the function \( F \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_1^t f(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  2. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  3. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  4. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |

  5. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't ...

    Text Solution

    |

  6. Let an be the n^(th) term, of a G.P of postive terms. If Sigma(n=1)^...

    Text Solution

    |

  7. If lim(x rarr 0)x[4/x]= A, then the value of x at which f(x) = [x^2]si...

    Text Solution

    |

  8. Let one end of focal chord of parabola y^2 = 8x is (1/2, -2), then equ...

    Text Solution

    |

  9. If 10 different balls are to be placed in 4 distinct boxes at random, ...

    Text Solution

    |

  10. If p rarr (p wedge ~ q) is false. Truth value of p & q will be

    Text Solution

    |

  11. Let A = {x : |x| lt 2} and B = {x : |x - 2| ge 3} then

    Text Solution

    |

  12. Let x + 6y = 8 is tangent to standard ellipse where minor axis is 4/sq...

    Text Solution

    |

  13. Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be defind...

    Text Solution

    |

  14. Let both root of equation ax^2 - 2bx + 5 = 0 are α and root of equatio...

    Text Solution

    |

  15. If f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1} an...

    Text Solution

    |

  16. If the distance between the plane 23x-10y-2z+48 =0 and the plane cont...

    Text Solution

    |

  17. Let veca, vecb and vecc be three vectors such that |veca |=sqrt(3), |...

    Text Solution

    |

  18. If .^25 C0 + 5 .^25 C1 + 9 .^25 C2 .... 101 .^25 C25 = 2^(25) k find k...

    Text Solution

    |

  19. Find the number of terms common to the two A.P. s : 3,7,11 , 407a n d...

    Text Solution

    |

  20. If the curves x^2-6x+y^2+8=0 and x^2-8y+y^2+16 -k =0 , (k gt 0) touch...

    Text Solution

    |