Home
Class 12
MATHS
Let veca, vecb and vecc be three vector...

Let `veca,` `vecb` and `vecc` be three vectors such that `|veca |=sqrt(3),` `|vec b|=5,` `vec b .vec c = 10` and the angle between `vec b` and `vec c` is `pi/3,` if `vec a` is perpendicular to the vector `vec b xx vec c,` then `|veca xx (vecbxxvecc)|` is equal to __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \( \vec{a} \times (\vec{b} \times \vec{c}) \) given the conditions provided. ### Step 1: Find the magnitude of \( \vec{c} \) We know that: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos(\theta) \] where \( \theta \) is the angle between \( \vec{b} \) and \( \vec{c} \). Given: - \( |\vec{b}| = 5 \) - \( \vec{b} \cdot \vec{c} = 10 \) - \( \theta = \frac{\pi}{3} \) Substituting the values: \[ 10 = 5 |\vec{c}| \cos\left(\frac{\pi}{3}\right) \] Since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \): \[ 10 = 5 |\vec{c}| \cdot \frac{1}{2} \] \[ 10 = \frac{5}{2} |\vec{c}| \] Multiplying both sides by 2: \[ 20 = 5 |\vec{c}| \] Dividing by 5: \[ |\vec{c}| = 4 \] ### Step 2: Calculate \( |\vec{b} \times \vec{c}| \) The magnitude of the cross product \( |\vec{b} \times \vec{c}| \) is given by: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin(\theta) \] Substituting the known values: \[ |\vec{b} \times \vec{c}| = 5 \cdot 4 \cdot \sin\left(\frac{\pi}{3}\right) \] Since \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \): \[ |\vec{b} \times \vec{c}| = 5 \cdot 4 \cdot \frac{\sqrt{3}}{2} = 10\sqrt{3} \] ### Step 3: Calculate \( |\vec{a} \times (\vec{b} \times \vec{c})| \) Since \( \vec{a} \) is perpendicular to \( \vec{b} \times \vec{c} \), we have: \[ |\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \sin(90^\circ) \] Given \( |\vec{a}| = \sqrt{3} \) and \( \sin(90^\circ) = 1 \): \[ |\vec{a} \times (\vec{b} \times \vec{c})| = \sqrt{3} \cdot (10\sqrt{3}) \cdot 1 = 30 \] ### Final Answer Thus, the magnitude \( |\vec{a} \times (\vec{b} \times \vec{c})| \) is equal to **30**.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb and vec(c ) are there vectors such that veca + vecb = vec(C ) and further a^2 +b^2 =c ^2 find the angle between veca and vecb ?

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= vec0 and |a|=3,| vec b|=5 and | vec c|=7. Find the angle between vec a and vec b .

If vec(a) and vec(b) are two vectors such that |vec(a) xx vec(b)| = vec(a).vec(b) , then what is the angle between vec(a) and vec(b) .

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then

Find the angle between two vectors vec a and vec b , if | vec a xx vec b|= vec a . vec b .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a and vec b are unit vectors such that ( vec a+ vec b).[(2 vec a+3 vec b)xx(3 vec a-2 vec b)]=0 , then angle between veca and vec b is a. 0 b. pi//2 c. pi d. indeterminate

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAIN-MATHEMATICS
  1. Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum(n=0)^oo (costhe...

    Text Solution

    |

  2. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  3. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  4. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |

  5. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't ...

    Text Solution

    |

  6. Let an be the n^(th) term, of a G.P of postive terms. If Sigma(n=1)^...

    Text Solution

    |

  7. If lim(x rarr 0)x[4/x]= A, then the value of x at which f(x) = [x^2]si...

    Text Solution

    |

  8. Let one end of focal chord of parabola y^2 = 8x is (1/2, -2), then equ...

    Text Solution

    |

  9. If 10 different balls are to be placed in 4 distinct boxes at random, ...

    Text Solution

    |

  10. If p rarr (p wedge ~ q) is false. Truth value of p & q will be

    Text Solution

    |

  11. Let A = {x : |x| lt 2} and B = {x : |x - 2| ge 3} then

    Text Solution

    |

  12. Let x + 6y = 8 is tangent to standard ellipse where minor axis is 4/sq...

    Text Solution

    |

  13. Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be defind...

    Text Solution

    |

  14. Let both root of equation ax^2 - 2bx + 5 = 0 are α and root of equatio...

    Text Solution

    |

  15. If f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1} an...

    Text Solution

    |

  16. If the distance between the plane 23x-10y-2z+48 =0 and the plane cont...

    Text Solution

    |

  17. Let veca, vecb and vecc be three vectors such that |veca |=sqrt(3), |...

    Text Solution

    |

  18. If .^25 C0 + 5 .^25 C1 + 9 .^25 C2 .... 101 .^25 C25 = 2^(25) k find k...

    Text Solution

    |

  19. Find the number of terms common to the two A.P. s : 3,7,11 , 407a n d...

    Text Solution

    |

  20. If the curves x^2-6x+y^2+8=0 and x^2-8y+y^2+16 -k =0 , (k gt 0) touch...

    Text Solution

    |