Home
Class 12
MATHS
Find the integral I= int( x^(2) + 5x-1) ...

Find the integral `I= int( x^(2) + 5x-1) /( sqrt(x) ) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x^2 + 5x - 1}{\sqrt{x}} \, dx \), we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can separate the integrand into simpler terms: \[ I = \int \left( \frac{x^2}{\sqrt{x}} + \frac{5x}{\sqrt{x}} - \frac{1}{\sqrt{x}} \right) \, dx \] This simplifies to: \[ I = \int \left( x^{2 - \frac{1}{2}} + 5x^{1 - \frac{1}{2}} - x^{-\frac{1}{2}} \right) \, dx \] Which can be rewritten as: \[ I = \int \left( x^{\frac{3}{2}} + 5x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right) \, dx \] ### Step 2: Integrate each term Now we can integrate each term separately: 1. For \( \int x^{\frac{3}{2}} \, dx \): \[ \int x^{\frac{3}{2}} \, dx = \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} x^{\frac{5}{2}} \] 2. For \( \int 5x^{\frac{1}{2}} \, dx \): \[ \int 5x^{\frac{1}{2}} \, dx = 5 \cdot \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = 5 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{10}{3} x^{\frac{3}{2}} \] 3. For \( \int -x^{-\frac{1}{2}} \, dx \): \[ \int -x^{-\frac{1}{2}} \, dx = -\frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} = -\frac{x^{\frac{1}{2}}}{\frac{1}{2}} = -2x^{\frac{1}{2}} \] ### Step 3: Combine the results Now we can combine all the results: \[ I = \frac{2}{5} x^{\frac{5}{2}} + \frac{10}{3} x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{2}{5} x^{\frac{5}{2}} + \frac{10}{3} x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate int (x^(2)+5x-1)/(sqrt(x))dx

Find the integral int(1-x)sqrt(x)dx

Find the integral int(sqrt(x)-(1)/(sqrt(x)))^(2)dx

Find the integral int(2x^(2)-3sin x+5sqrt(x))dx

Find the integral int(x^(2)-1)/(x^(2)+1)*(dx)/(sqrt(1+x^(4))) .

Evaluate the following definite integral: int_(1)^(4)(x^(2)+x)/(sqrt(2x+1))dx