Home
Class 12
MATHS
I = int( 6 x^(3) + x^(2)-2x + 1) /( 2x -...

`I = int( 6 x^(3) + x^(2)-2x + 1) /( 2x - 1) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{6x^3 + x^2 - 2x + 1}{2x - 1} \, dx \), we will follow these steps: ### Step 1: Polynomial Long Division Since the degree of the numerator (3) is greater than the degree of the denominator (1), we will perform polynomial long division. 1. Divide \( 6x^3 \) by \( 2x \) to get \( 3x^2 \). 2. Multiply \( 3x^2 \) by \( 2x - 1 \) to get \( 6x^3 - 3x^2 \). 3. Subtract this from the original polynomial: \[ (6x^3 + x^2 - 2x + 1) - (6x^3 - 3x^2) = 4x^2 - 2x + 1 \] ### Step 2: Continue Polynomial Long Division Now, we divide \( 4x^2 \) by \( 2x \) to get \( 2x \). 1. Multiply \( 2x \) by \( 2x - 1 \) to get \( 4x^2 - 2x \). 2. Subtract this from the current polynomial: \[ (4x^2 - 2x + 1) - (4x^2 - 2x) = 1 \] ### Step 3: Write the Integral Now we can express the integral as: \[ I = \int (3x^2 + 2x + \frac{1}{2x - 1}) \, dx \] ### Step 4: Integrate Each Term Now we will integrate each term separately: 1. \( \int 3x^2 \, dx = 3 \cdot \frac{x^3}{3} = x^3 \) 2. \( \int 2x \, dx = 2 \cdot \frac{x^2}{2} = x^2 \) 3. For the last term, \( \int \frac{1}{2x - 1} \, dx \): - This can be integrated as \( \frac{1}{2} \ln |2x - 1| \). ### Step 5: Combine Results Putting it all together, we have: \[ I = x^3 + x^2 + \frac{1}{2} \ln |2x - 1| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = x^3 + x^2 + \frac{1}{2} \ln |2x - 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos