Home
Class 12
MATHS
I = Int ( x^(2) + 5)^(3) dx....

`I = Int ( x^(2) + 5)^(3) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (x^2 + 5)^3 \, dx \), we will use the binomial expansion and then integrate term by term. Here is a step-by-step solution: ### Step 1: Expand the integrand using the binomial theorem We know that \( (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \). In our case, let \( a = x^2 \) and \( b = 5 \). \[ (x^2 + 5)^3 = (x^2)^3 + 3(x^2)^2(5) + 3(x^2)(5^2) + (5)^3 \] Calculating each term: - \( (x^2)^3 = x^6 \) - \( 3(x^2)^2(5) = 15x^4 \) - \( 3(x^2)(25) = 75x^2 \) - \( (5)^3 = 125 \) Thus, we have: \[ (x^2 + 5)^3 = x^6 + 15x^4 + 75x^2 + 125 \] ### Step 2: Write the integral Now we can rewrite the integral: \[ I = \int (x^6 + 15x^4 + 75x^2 + 125) \, dx \] ### Step 3: Integrate term by term We will integrate each term separately: 1. \( \int x^6 \, dx = \frac{x^{7}}{7} \) 2. \( \int 15x^4 \, dx = 15 \cdot \frac{x^{5}}{5} = 3x^{5} \) 3. \( \int 75x^2 \, dx = 75 \cdot \frac{x^{3}}{3} = 25x^{3} \) 4. \( \int 125 \, dx = 125x \) Combining these results, we get: \[ I = \frac{x^{7}}{7} + 3x^{5} + 25x^{3} + 125x + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{x^{7}}{7} + 3x^{5} + 25x^{3} + 125x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos