Home
Class 12
MATHS
I= int sin^(2) 3x dx....

`I= int sin^(2) 3x dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sin^2(3x) \, dx \), we can use the trigonometric identity for \(\sin^2\) which states: \[ \sin^2(a) = \frac{1 - \cos(2a)}{2} \] ### Step-by-Step Solution: 1. **Apply the Identity**: We apply the identity to \(\sin^2(3x)\): \[ \sin^2(3x) = \frac{1 - \cos(6x)}{2} \] 2. **Rewrite the Integral**: Substitute the identity into the integral: \[ I = \int \sin^2(3x) \, dx = \int \frac{1 - \cos(6x)}{2} \, dx \] 3. **Separate the Integral**: We can separate the integral: \[ I = \frac{1}{2} \int (1 - \cos(6x)) \, dx = \frac{1}{2} \left( \int 1 \, dx - \int \cos(6x) \, dx \right) \] 4. **Integrate Each Term**: - The integral of \(1\) with respect to \(x\) is: \[ \int 1 \, dx = x \] - The integral of \(\cos(6x)\) is: \[ \int \cos(6x) \, dx = \frac{1}{6} \sin(6x) \] Therefore, we have: \[ I = \frac{1}{2} \left( x - \frac{1}{6} \sin(6x) \right) \] 5. **Combine the Results**: Now, combine the results: \[ I = \frac{x}{2} - \frac{1}{12} \sin(6x) + C \] where \(C\) is the constant of integration. ### Final Answer: \[ I = \frac{x}{2} - \frac{1}{12} \sin(6x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos