Home
Class 12
MATHS
I= int cosh^(2) (8x + 5) dx....

`I= int cosh^(2) (8x + 5) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \cosh^2(8x + 5) \, dx \), we can use the identity for hyperbolic functions and the method of integration. ### Step-by-Step Solution: 1. **Use the Hyperbolic Identity**: We know that: \[ \cosh^2(x) = \frac{1 + \cosh(2x)}{2} \] Therefore, we can rewrite the integral: \[ I = \int \cosh^2(8x + 5) \, dx = \int \frac{1 + \cosh(2(8x + 5))}{2} \, dx \] 2. **Simplify the Integral**: Expanding the integral gives: \[ I = \frac{1}{2} \int (1 + \cosh(16x + 10)) \, dx \] This can be separated into two integrals: \[ I = \frac{1}{2} \left( \int 1 \, dx + \int \cosh(16x + 10) \, dx \right) \] 3. **Integrate Each Part**: - The first integral is straightforward: \[ \int 1 \, dx = x \] - For the second integral, we can use the fact that: \[ \int \cosh(kx) \, dx = \frac{1}{k} \sinh(kx) \] Here, \( k = 16 \): \[ \int \cosh(16x + 10) \, dx = \frac{1}{16} \sinh(16x + 10) \] 4. **Combine the Results**: Putting it all together, we have: \[ I = \frac{1}{2} \left( x + \frac{1}{16} \sinh(16x + 10) \right) + C \] Simplifying this gives: \[ I = \frac{x}{2} + \frac{1}{32} \sinh(16x + 10) + C \] ### Final Answer: \[ I = \frac{x}{2} + \frac{1}{32} \sinh(16x + 10) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos