Home
Class 12
MATHS
I= int (dx)/( sqrt( 4-9 x^(2) ) )....

`I= int (dx)/( sqrt( 4-9 x^(2) ) )`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{4 - 9x^2}} \), we can follow these steps: ### Step 1: Identify the form of the integral We recognize that the integral resembles the standard form \( \int \frac{dx}{\sqrt{a^2 - x^2}} \), where \( a^2 = 4 \) and \( x^2 = 9x^2 \). ### Step 2: Rewrite the integral We can factor out constants from the square root: \[ I = \int \frac{dx}{\sqrt{4 - 9x^2}} = \int \frac{dx}{\sqrt{4(1 - \frac{9}{4}x^2}}} = \int \frac{dx}{2\sqrt{1 - \left(\frac{3}{2}x\right)^2}} \] This simplifies to: \[ I = \frac{1}{2} \int \frac{dx}{\sqrt{1 - \left(\frac{3}{2}x\right)^2}} \] ### Step 3: Use substitution Let \( u = \frac{3}{2}x \). Then, \( du = \frac{3}{2}dx \) or \( dx = \frac{2}{3}du \). Substituting this into the integral gives: \[ I = \frac{1}{2} \int \frac{\frac{2}{3}du}{\sqrt{1 - u^2}} = \frac{1}{3} \int \frac{du}{\sqrt{1 - u^2}} \] ### Step 4: Integrate using the standard result The integral \( \int \frac{du}{\sqrt{1 - u^2}} \) is known to be \( \sin^{-1}(u) + C \). Thus, \[ I = \frac{1}{3} \sin^{-1}(u) + C \] ### Step 5: Substitute back for \( u \) Now, substituting back \( u = \frac{3}{2}x \): \[ I = \frac{1}{3} \sin^{-1}\left(\frac{3}{2}x\right) + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{3} \sin^{-1}\left(\frac{3}{2}x\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos