Home
Class 12
MATHS
I= int (dx)/( sqrt( 5-x^(2) - 4x) )....

`I= int (dx)/( sqrt( 5-x^(2) - 4x) )`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{5 - x^2 - 4x}} \), we will follow these steps: ### Step 1: Simplify the expression under the square root We start with the expression under the square root: \[ 5 - x^2 - 4x \] We can rearrange this to make it easier to complete the square. We rewrite it as: \[ 5 - (x^2 + 4x) \] Now, we complete the square for \( x^2 + 4x \): \[ x^2 + 4x = (x + 2)^2 - 4 \] Thus, we can rewrite the expression under the square root: \[ 5 - (x^2 + 4x) = 5 - ((x + 2)^2 - 4) = 5 + 4 - (x + 2)^2 = 9 - (x + 2)^2 \] ### Step 2: Rewrite the integral Now we can substitute this back into the integral: \[ I = \int \frac{dx}{\sqrt{9 - (x + 2)^2}} \] ### Step 3: Use the standard integral formula We recognize that this integral is of the form: \[ \int \frac{dx}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C \] where \( a = 3 \) and \( u = x + 2 \). Thus, we can apply the formula: \[ I = \sin^{-1}\left(\frac{x + 2}{3}\right) + C \] ### Final Answer Therefore, the solution to the integral is: \[ I = \sin^{-1}\left(\frac{x + 2}{3}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos