Home
Class 12
MATHS
I= int - (dx)/( sqrt( x^(2) + 6x + 1) )...

`I= int - (dx)/( sqrt( x^(2) + 6x + 1) )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = -\int \frac{dx}{\sqrt{x^2 + 6x + 1}} \), we will follow these steps: ### Step 1: Simplify the expression under the square root First, we need to complete the square for the expression \( x^2 + 6x + 1 \). \[ x^2 + 6x + 1 = (x^2 + 6x + 9) - 9 + 1 = (x + 3)^2 - 8 \] ### Step 2: Rewrite the integral Now we can rewrite the integral using the completed square: \[ I = -\int \frac{dx}{\sqrt{(x + 3)^2 - 8}} \] ### Step 3: Use a trigonometric substitution To evaluate this integral, we can use the substitution \( x + 3 = 2\sqrt{2} \sec(\theta) \). Then, \( dx = 2\sqrt{2} \sec(\theta) \tan(\theta) d\theta \). ### Step 4: Substitute into the integral Substituting \( x + 3 = 2\sqrt{2} \sec(\theta) \) into the integral gives: \[ I = -\int \frac{2\sqrt{2} \sec(\theta) \tan(\theta) d\theta}{\sqrt{(2\sqrt{2} \sec(\theta))^2 - 8}} \] The expression under the square root simplifies to: \[ \sqrt{(2\sqrt{2})^2 \sec^2(\theta) - 8} = \sqrt{8 \sec^2(\theta) - 8} = \sqrt{8(\sec^2(\theta) - 1)} = \sqrt{8 \tan^2(\theta)} = 2\sqrt{2} \tan(\theta) \] Thus, the integral becomes: \[ I = -\int \frac{2\sqrt{2} \sec(\theta) \tan(\theta) d\theta}{2\sqrt{2} \tan(\theta)} = -\int \sec(\theta) d\theta \] ### Step 5: Integrate The integral of \( \sec(\theta) \) is: \[ -\int \sec(\theta) d\theta = -\ln |\sec(\theta) + \tan(\theta)| + C \] ### Step 6: Back substitute Now we need to back substitute for \( \theta \). Recall that: \[ \tan(\theta) = \frac{\sqrt{(x + 3)^2 - 8}}{2\sqrt{2}} \quad \text{and} \quad \sec(\theta) = \frac{x + 3}{2\sqrt{2}} \] Thus, we have: \[ I = -\ln \left| \frac{x + 3}{2\sqrt{2}} + \frac{\sqrt{(x + 3)^2 - 8}}{2\sqrt{2}} \right| + C \] ### Final Answer The final answer can be simplified to: \[ I = -\ln \left| (x + 3) + \sqrt{(x + 3)^2 - 8} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(6-x-x^(2)))

int (dx)/(sqrt(x^(2)+6x+5))=?

int(dx)/(sqrt(x^(2)-6x+10))

(i) int(x-1)/(sqrt(x^(2)+1))dx

I=int(x+1)/(sqrt(x+2))dx

If I=int(x^2+1dx)/(sqrt(1+x^(2))

int(x+3)/(sqrt(7-6x-x^(2)))dx

6. int(1)/(sqrt(2x^(2)-6))*dx

I=int(1)/(x-sqrt(x))dx

I=int(1)/(x+sqrt(x))dx