Home
Class 12
MATHS
Evaluate the following integrals : (b)...

Evaluate the following integrals :
(b) `int ( x-1)/( root(3) (x^2) ) dx,`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x - 1}{\sqrt[3]{x^2}} \, dx, \] we can first simplify the integrand. We can rewrite the expression as: \[ \frac{x - 1}{\sqrt[3]{x^2}} = \frac{x}{\sqrt[3]{x^2}} - \frac{1}{\sqrt[3]{x^2}}. \] Now, we can express this in terms of powers of \(x\): \[ \frac{x}{\sqrt[3]{x^2}} = x^{1 - \frac{2}{3}} = x^{\frac{1}{3}}, \] and \[ \frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}. \] Thus, we can rewrite the integral as: \[ \int \left( x^{\frac{1}{3}} - x^{-\frac{2}{3}} \right) \, dx. \] Now we can integrate each term separately: 1. For the first term \(x^{\frac{1}{3}}\): \[ \int x^{\frac{1}{3}} \, dx = \frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1} = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4} x^{\frac{4}{3}}. \] 2. For the second term \(-x^{-\frac{2}{3}}\): \[ \int -x^{-\frac{2}{3}} \, dx = -\frac{x^{-\frac{2}{3} + 1}}{-\frac{2}{3} + 1} = -\frac{x^{\frac{1}{3}}}{\frac{1}{3}} = -3x^{\frac{1}{3}}. \] Combining these results, we have: \[ \int \frac{x - 1}{\sqrt[3]{x^2}} \, dx = \frac{3}{4} x^{\frac{4}{3}} - 3x^{\frac{1}{3}} + C, \] where \(C\) is the constant of integration. Thus, the final answer is: \[ \int \frac{x - 1}{\sqrt[3]{x^2}} \, dx = \frac{3}{4} x^{\frac{4}{3}} - 3x^{\frac{1}{3}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos