Home
Class 12
MATHS
Integrate: I= int ( x^(3) + 1) cos x dx....

Integrate: `I= int ( x^(3) + 1) cos x dx`.

Text Solution

Verified by Experts

The correct Answer is:
`= ( x^(3) - 6x+1) sin x+ (3x^(2) - 6) cos x + C`.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Integrate: int(3 x^2)/(x^(3)-1)dx

Evaluate the following Integrals : int (dx)/(sin x(3+1 cos x))dx

Evaluate the integral : I = int_(1)^(5) (4x - 1) dx

Integrate int_1^2x^3dx

Integrate: int x^3/sqrt(1-x^8) dx

Integrate: int cos ecx (cos ecx +cot x) dx

Evaluate the following integration int sin^(3) x cos^(3) x dx

Integrate: int cos^3 x sin^4 x dx.

Integrate int(4x^3dx)/sqrt(1-x^8)

Integrate I= int(sin2x-cos2x)^(2)dx