Home
Class 12
MATHS
I= int ( 3x^(2) + 6x +5) "arc" tan x dx...

`I= int ( 3x^(2) + 6x +5) "arc" tan x dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (3x^2 + 6x + 5) \tan^{-1}(x) \, dx \), we will use integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(x) \) (which is the inverse tangent function) - \( dv = (3x^2 + 6x + 5) \, dx \) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): 1. Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] 2. Integrate \( dv \): \[ v = \int (3x^2 + 6x + 5) \, dx = x^3 + 3x^2 + 5x \] ### Step 3: Apply the Integration by Parts Formula Substituting \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ I = uv - \int v \, du \] \[ I = \tan^{-1}(x) (x^3 + 3x^2 + 5x) - \int (x^3 + 3x^2 + 5x) \left(\frac{1}{1+x^2}\right) \, dx \] ### Step 4: Simplify the Integral Now we need to simplify the integral: \[ \int (x^3 + 3x^2 + 5x) \left(\frac{1}{1+x^2}\right) \, dx \] This can be rewritten as: \[ \int \left(\frac{x^3}{1+x^2} + \frac{3x^2}{1+x^2} + \frac{5x}{1+x^2}\right) \, dx \] ### Step 5: Divide and Simplify Each Term 1. For \( \frac{x^3}{1+x^2} \): \[ \frac{x^3}{1+x^2} = x - \frac{x}{1+x^2} \] 2. For \( \frac{3x^2}{1+x^2} \): \[ \frac{3x^2}{1+x^2} = 3 - \frac{3}{1+x^2} \] 3. For \( \frac{5x}{1+x^2} \): \[ \frac{5x}{1+x^2} \text{ remains as is.} \] ### Step 6: Combine All Terms Now, substituting these back, we have: \[ \int \left( x - \frac{x}{1+x^2} + 3 - \frac{3}{1+x^2} + \frac{5x}{1+x^2} \right) \, dx \] Combine the fractions: \[ = \int \left( x + 3 + \frac{(5-1-3)x}{1+x^2} \right) \, dx = \int \left( x + 3 + \frac{x}{1+x^2} \right) \, dx \] ### Step 7: Integrate Each Term Now, we can integrate each term: 1. \( \int x \, dx = \frac{x^2}{2} \) 2. \( \int 3 \, dx = 3x \) 3. \( \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \ln(1+x^2) \) ### Step 8: Combine Everything Putting it all together: \[ I = \tan^{-1}(x)(x^3 + 3x^2 + 5x) - \left( \frac{x^2}{2} + 3x + \frac{1}{2} \ln(1+x^2) \right) + C \] ### Final Answer Thus, the final answer is: \[ I = \tan^{-1}(x)(x^3 + 3x^2 + 5x) - \left( \frac{x^2}{2} + 3x + \frac{1}{2} \ln(1+x^2) \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int x^(3) "arc" tan x dx .

int x^(2) "arc" cos x dx .

I = Int ( x^(2) + 5)^(3) dx .

Compute the integrals : int_(0)^(1) x "arc tan x dx

int ( x +2)/( 2x ^(2) + 6x + 5) dx = p int ( 4x +6)/( 2x ^(2) + 6x +5) dx + (1)/(2) int (1)/( 2x ^(2) + 6x + 5) dx then p

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

I= int - (dx)/( sqrt( x^(2) + 6x + 1) )