Home
Class 12
MATHS
int root(3)(x) ( "ln" x)^(2)dx....

`int root(3)(x) ( "ln" x)^(2)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^{\frac{1}{3}} (\ln x)^2 \, dx \), we will use the integration by parts method. ### Step-by-Step Solution: 1. **Identify \( u \) and \( dv \)**: We will choose: \[ u = (\ln x)^2 \quad \text{and} \quad dv = x^{\frac{1}{3}} \, dx \] 2. **Differentiate \( u \) and Integrate \( dv \)**: Now, we differentiate \( u \) and integrate \( dv \): \[ du = 2 \ln x \cdot \frac{1}{x} \, dx = \frac{2 \ln x}{x} \, dx \] \[ v = \int x^{\frac{1}{3}} \, dx = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4} x^{\frac{4}{3}} \] 3. **Apply Integration by Parts Formula**: The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ I = \left( \frac{3}{4} x^{\frac{4}{3}} (\ln x)^2 \right) - \int \left( \frac{3}{4} x^{\frac{4}{3}} \cdot \frac{2 \ln x}{x} \right) \, dx \] Simplifying the integral: \[ I = \frac{3}{4} x^{\frac{4}{3}} (\ln x)^2 - \frac{3}{2} \int x^{\frac{1}{3}} \ln x \, dx \] 4. **Evaluate the Remaining Integral**: Let \( I_1 = \int x^{\frac{1}{3}} \ln x \, dx \). We will again use integration by parts: - Choose \( u = \ln x \) and \( dv = x^{\frac{1}{3}} \, dx \). - Then, \( du = \frac{1}{x} \, dx \) and \( v = \frac{3}{4} x^{\frac{4}{3}} \). Applying integration by parts: \[ I_1 = \left( \frac{3}{4} x^{\frac{4}{3}} \ln x \right) - \int \left( \frac{3}{4} x^{\frac{4}{3}} \cdot \frac{1}{x} \right) \, dx \] \[ I_1 = \frac{3}{4} x^{\frac{4}{3}} \ln x - \frac{3}{4} \int x^{\frac{1}{3}} \, dx \] \[ I_1 = \frac{3}{4} x^{\frac{4}{3}} \ln x - \frac{3}{4} \cdot \frac{3}{4} x^{\frac{4}{3}} + C \] \[ I_1 = \frac{3}{4} x^{\frac{4}{3}} \ln x - \frac{9}{16} x^{\frac{4}{3}} + C \] 5. **Substitute Back to Find \( I \)**: Now substituting \( I_1 \) back into the equation for \( I \): \[ I = \frac{3}{4} x^{\frac{4}{3}} (\ln x)^2 - \frac{3}{2} \left( \frac{3}{4} x^{\frac{4}{3}} \ln x - \frac{9}{16} x^{\frac{4}{3}} \right) \] \[ I = \frac{3}{4} x^{\frac{4}{3}} (\ln x)^2 - \frac{9}{8} x^{\frac{4}{3}} \ln x + \frac{27}{32} x^{\frac{4}{3}} + C \] 6. **Final Simplification**: Factor out \( x^{\frac{4}{3}} \): \[ I = x^{\frac{4}{3}} \left( \frac{3}{4} (\ln x)^2 - \frac{9}{8} \ln x + \frac{27}{32} \right) + C \] ### Final Answer: \[ I = x^{\frac{4}{3}} \left( \frac{3}{4} (\ln x)^2 - \frac{9}{8} \ln x + \frac{27}{32} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x(log x)^(2))dx

int x (log x)^(2)dx

int (ln x)^2/(x)dx

int(log x)^(2)dx=

int x log x^(2)dx

int sqrt(x)(log x)^(2)dx

"int x^(n)(log x)^(2)dx

int 1/(x(log x)^2)dx

1) int x log x^(2)dx

int x^(2)(log x)^(2)dx