Home
Class 12
MATHS
int ( "arc" sin x dx)/( sqrt( 1+ x))....

`int ( "arc" sin x dx)/( sqrt( 1+ x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\arcsin x}{\sqrt{1+x}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \arcsin x \). Then, \( x = \sin t \) and \( dx = \cos t \, dt \). ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral gives us: \[ \int \frac{t}{\sqrt{1+\sin t}} \cos t \, dt \] ### Step 3: Simplify the Square Root We know that \( 1 + \sin t = 1 + \sin t \) can be rewritten using the identity: \[ 1 + \sin t = \left(\sin \frac{t}{2} + \cos \frac{t}{2}\right)^2 \] Thus, we have: \[ \sqrt{1 + \sin t} = \sin \frac{t}{2} + \cos \frac{t}{2} \] ### Step 4: Rewrite the Integral Again Now, substituting this back into the integral gives: \[ \int \frac{t \cos t}{\sin \frac{t}{2} + \cos \frac{t}{2}} \, dt \] ### Step 5: Integration by Parts We can apply integration by parts. Let: - \( u = t \) and \( dv = \frac{\cos t}{\sin \frac{t}{2} + \cos \frac{t}{2}} \, dt \) Then, we differentiate and integrate: - \( du = dt \) - To find \( v \), we need to integrate \( dv \). ### Step 6: Finding \( v \) Integrating \( dv \) requires a more complex approach, but we can express it as: \[ v = \int \frac{\cos t}{\sin \frac{t}{2} + \cos \frac{t}{2}} \, dt \] This integral can be evaluated using standard techniques or further substitutions. ### Step 7: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we can express our integral in terms of \( u \) and \( v \). ### Step 8: Final Integration After applying integration by parts and simplifying, we will have an expression involving \( t \) and the integral of \( v \). We can substitute back \( t = \arcsin x \) to express the final answer in terms of \( x \). ### Step 9: Add Constant of Integration Finally, we add the constant of integration \( C \) to our result. ### Final Answer The final answer will be in terms of \( \arcsin x \) and other trigonometric functions derived from our integration process.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1+sin x))

Integration of other transcendental functions I=int(x arc tan x dx)/(sqrt(1+x^(2))).

Compute the integral I = int_(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

int(sin x)/(sqrt(1+sin x))dx

int(sin x)/( sqrt(1+cos x))dx=?

I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-x^2) ) .

int sqrt(1-sin 2x) dx

int(sin x(dx)/(sqrt(1+cos x))) is equal to =

int (cos x)/( sin x+sqrt(sin x)) dx