Home
Class 12
MATHS
int x^(3) "arc" tan x dx....

`int x^(3) "arc" tan x dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 \tan^{-1}(x) \, dx \), we will use the method of integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(x) \) (which we will differentiate) - \( dv = x^3 \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1 + x^2} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply the Integration by Parts Formula Substituting into the integration by parts formula: \[ \int x^3 \tan^{-1}(x) \, dx = \left( \tan^{-1}(x) \cdot \frac{x^4}{4} \right) - \int \left( \frac{x^4}{4} \cdot \frac{1}{1 + x^2} \right) \, dx \] This simplifies to: \[ = \frac{x^4}{4} \tan^{-1}(x) - \frac{1}{4} \int \frac{x^4}{1 + x^2} \, dx \] ### Step 4: Simplify the Integral Now we simplify the integral \( \int \frac{x^4}{1 + x^2} \, dx \): \[ \frac{x^4}{1 + x^2} = \frac{x^4 + x^2 - x^2}{1 + x^2} = x^2 - \frac{x^2}{1 + x^2} \] Thus, \[ \int \frac{x^4}{1 + x^2} \, dx = \int x^2 \, dx - \int \frac{x^2}{1 + x^2} \, dx \] ### Step 5: Solve Each Integral 1. The first integral: \[ \int x^2 \, dx = \frac{x^3}{3} \] 2. The second integral can be solved by using the substitution \( w = 1 + x^2 \): \[ \int \frac{x^2}{1 + x^2} \, dx = \int \left( 1 - \frac{1}{1 + x^2} \right) \, dx = x - \tan^{-1}(x) \] ### Step 6: Combine Results Putting it all together: \[ \int \frac{x^4}{1 + x^2} \, dx = \frac{x^3}{3} - \left( x - \tan^{-1}(x) \right) = \frac{x^3}{3} - x + \tan^{-1}(x) \] ### Step 7: Substitute Back Substituting back into our integration by parts result: \[ \int x^3 \tan^{-1}(x) \, dx = \frac{x^4}{4} \tan^{-1}(x) - \frac{1}{4} \left( \frac{x^3}{3} - x + \tan^{-1}(x) \right) \] ### Step 8: Final Simplification \[ = \frac{x^4}{4} \tan^{-1}(x) - \frac{x^3}{12} + \frac{x}{4} - \frac{1}{4} \tan^{-1}(x) + C \] Thus, the final answer is: \[ \int x^3 \tan^{-1}(x) \, dx = \left( \frac{x^4}{4} - \frac{1}{4} \right) \tan^{-1}(x) - \frac{x^3}{12} + \frac{x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int x^(2) "arc" cos x dx .

Compute the integrals : int_(0)^(1) x "arc tan x dx

I= int ( 3x^(2) + 6x +5) "arc" tan x dx .

int ( "arc" sin x dx)/( sqrt( 1+ x)) .

Evaluate : int x^(3)tan^(-1)x dx

Compute the integrals : int_(0)^(1) " arc tan " sqrt(x) dx

Integration of other transcendental functions I=int(x arc tan x dx)/(sqrt(1+x^(2))).

Evaluate int tanx tan 2x tan 3x dx .