Home
Class 12
MATHS
int x^(2) "arc" cos x dx....

`int x^(2) "arc" cos x dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \arccos(x) \, dx \), we will use integration by parts. The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Identify \( u \) and \( dv \) Let: - \( u = \arccos(x) \) (this is the inverse trigonometric function) - \( dv = x^2 \, dx \) (this is the algebraic function) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = -\frac{1}{\sqrt{1 - x^2}} \, dx \] - Integrate \( dv \): \[ v = \int x^2 \, dx = \frac{x^3}{3} \] ### Step 3: Apply the integration by parts formula Now we can apply the integration by parts formula: \[ \int x^2 \arccos(x) \, dx = uv - \int v \, du \] Substituting the values of \( u \), \( v \), and \( du \): \[ = \arccos(x) \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \left(-\frac{1}{\sqrt{1 - x^2}}\right) \, dx \] This simplifies to: \[ = \frac{x^3}{3} \arccos(x) + \frac{1}{3} \int \frac{x^3}{\sqrt{1 - x^2}} \, dx \] ### Step 4: Simplify the remaining integral To solve \( \int \frac{x^3}{\sqrt{1 - x^2}} \, dx \), we can use the substitution: Let \( x = \sin(\theta) \), then \( dx = \cos(\theta) \, d\theta \) and \( \sqrt{1 - x^2} = \cos(\theta) \). Substituting these into the integral gives: \[ \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta \] ### Step 5: Solve \( \int \sin^3(\theta) \, d\theta \) Using the identity \( \sin^3(\theta) = \sin(\theta)(1 - \cos^2(\theta)) \): \[ = \int \sin(\theta) \, d\theta - \int \sin(\theta) \cos^2(\theta) \, d\theta \] The first integral is: \[ -\cos(\theta) \] For the second integral, use the substitution \( u = \cos(\theta) \), \( du = -\sin(\theta) d\theta \): \[ \int \sin(\theta) \cos^2(\theta) \, d\theta = -\int u^2 \, du = -\frac{u^3}{3} = -\frac{\cos^3(\theta)}{3} \] Thus, \[ \int \sin^3(\theta) \, d\theta = -\cos(\theta) + \frac{\cos^3(\theta)}{3} \] ### Step 6: Substitute back to \( x \) Now substitute back \( \theta = \arcsin(x) \): \[ = -\sqrt{1 - x^2} + \frac{(1 - x^2)^{3/2}}{3} \] ### Final Step: Combine everything Putting everything together: \[ \int x^2 \arccos(x) \, dx = \frac{x^3}{3} \arccos(x) + \frac{1}{3} \left(-\sqrt{1 - x^2} + \frac{(1 - x^2)^{3/2}}{3}\right) + C \] Thus, the final answer is: \[ \int x^2 \arccos(x) \, dx = \frac{x^3}{3} \arccos(x) - \frac{\sqrt{1 - x^2}}{3} + \frac{(1 - x^2)^{3/2}}{9} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int x^(3) "arc" tan x dx .

Evaluate int x^(2) cos x dx

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-x^2) ) .

int ( "arc" sin x dx)/( sqrt( 1+ x)) .

Compute the integrals : int_(0)^(1) x "arc tan x dx

int x^(3)*cos x^(2)dx