Home
Class 12
MATHS
Integrating by parts, derive reduction f...

Integrating by parts, derive reduction formulas for calculating the following integrals :
(c ) `I_(n) = int ( a^(2) - x^(2) )^(n) dx`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Integrating by parts, derive reduction formulas for calculating the following integrals : (a) I_(n) = int (dx)/( (x^(2) + a^(2) )^(n) ) ,

Evaluate the following integrals : (d) int ( x^( n-1) )/( x^( 2n) + a^(2) ) dx ,

Evaluate the following integrals: int(logx)/(x^(n))dx

Evaluate the following Integrals : int (dx)/(x(x^(n)+1))

Find the following integrals: ( i ) int(dx)/(x^(2)-16)int(dx)/(sqrt(2x-x^(2)))

Evaluate the following integration int 2^(x)*e^(x)*dx

Integrate the following integral, I=int(4x+1)/(x^(2)+3x+2)dx

Evaluate the following integrals: (1-35)pi/2int_(0)^( pi/2)(sin^(n)x)/(sin^(n)+cos^(n)x)dx