Home
Class 12
MATHS
Evaluate the integrals : I = int(1//pi)...

Evaluate the integrals : `I = int_(1//pi)^(2//pi) (sin""(1)/(x))/(x^(2)) dx`,

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} \, dx, \] we will use substitution and properties of differentiation. ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we have: \[ x = \frac{1}{t} \quad \text{and} \quad dx = -\frac{1}{t^2} \, dt. \] ### Step 2: Change the limits of integration When \( x = \frac{1}{\pi} \), \[ t = \frac{1}{\frac{1}{\pi}} = \pi. \] When \( x = \frac{2}{\pi} \), \[ t = \frac{1}{\frac{2}{\pi}} = \frac{\pi}{2}. \] Thus, the limits change from \( x: \left[\frac{1}{\pi}, \frac{2}{\pi}\right] \) to \( t: \left[\pi, \frac{\pi}{2}\right] \). ### Step 3: Rewrite the integral Substituting into the integral, we get: \[ I = \int_{\pi}^{\frac{\pi}{2}} \sin(t) \left(-\frac{1}{t^2}\right) \left(-\frac{1}{t^2}\right) dt = \int_{\pi}^{\frac{\pi}{2}} \frac{\sin(t)}{t^2} \, dt. \] ### Step 4: Change the order of limits Changing the limits of integration gives us: \[ I = \int_{\frac{\pi}{2}}^{\pi} \frac{\sin(t)}{t^2} \, dt. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ I = -\left[-\cos(t)\right]_{\frac{\pi}{2}}^{\pi} = \left[-\cos(\pi) + \cos\left(\frac{\pi}{2}\right)\right]. \] Calculating the values: \[ \cos(\pi) = -1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0. \] Thus, \[ I = -(-1) + 0 = 1. \] ### Final Answer The value of the integral is \[ \boxed{1}. \] ---
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 4 (Changing the Variable in a Definite Integral)|30 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int_(1//pi)^(2//pi)(sin(1//x)+cos(1//x))/(x^(2))dx=

Evaluate the integrals : I = int_(-pi)^(pi) sin^(2) (x/2) dx ,

The value of integral int _(1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

Evaluate the integrals : I = int_(0)^(pi//4) (x^(2))/( x^(2) + 1) dx ,

int_(-pi)^( pi)(sin^(2)x)/(1+a^(x))dx

Evaluate the integrals int_(0)^((pi)/(2))(sin x)/(1+cos^(2)x)dx

Compute the integrals I = int_(pi//4)^(pi//3) (dx)/( 1 - sin x)

Evaluate the following integral: int_1^(2pi)|s in x|dx

Evaluate the following integral: int_(0)^(2 pi)sqrt(1+(sin x)/(2))dx

Evaluate the following integral: int_(-pi//2)^pisin^(-1)(sin x)dx