Home
Class 12
MATHS
Evaluate the integrals : I = int(0)^(1)...

Evaluate the integrals : `I = int_(0)^(1) (e^(x))/( 1 + e^(2x)) dx` ,

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{e^x}{1 + e^{2x}} \, dx, \] we can use a substitution method. Let's proceed step by step. ### Step 1: Substitution Let \( T = e^x \). Then, the differential \( dT = e^x \, dx \) or \( dx = \frac{dT}{T} \). ### Step 2: Change the limits of integration When \( x = 0 \), \( T = e^0 = 1 \). When \( x = 1 \), \( T = e^1 = e \). Thus, the limits of integration change from \( x = 0 \) to \( x = 1 \) into \( T = 1 \) to \( T = e \). ### Step 3: Rewrite the integral Now substituting \( e^x \) and \( dx \) in the integral, we have: \[ I = \int_{1}^{e} \frac{T}{1 + T^2} \cdot \frac{dT}{T} = \int_{1}^{e} \frac{1}{1 + T^2} \, dT. \] ### Step 4: Evaluate the integral The integral \( \int \frac{1}{1 + T^2} \, dT \) is known to be \( \tan^{-1}(T) \). Thus, \[ I = \left[ \tan^{-1}(T) \right]_{1}^{e} = \tan^{-1}(e) - \tan^{-1}(1). \] ### Step 5: Calculate the values We know that \( \tan^{-1}(1) = \frac{\pi}{4} \). Therefore, \[ I = \tan^{-1}(e) - \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ I = \tan^{-1}(e) - \frac{\pi}{4}. \] ---
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 4 (Changing the Variable in a Definite Integral)|30 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

Evaluate the integrals : I = int_(e)^(e^(2))(dx)/(x I n x) ,

Evaluate the integral I = int_(0)^(2) |1-x| dx

Evaluate the integral I=int_(0)^(2)|x-1|dx .

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

Evaluate the integrals int_(0)^(1)(x)/(x^(2)+1)dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=