Home
Class 12
MATHS
Find the derivative with respect to x of...

Find the derivative with respect to x of the following functions :
(a) `F(x) = int_(x^(2))^(x^(3)) "In t dt " (x gt 0)`
(b) `f(x) = int_(1//x)^(sqrt(x)) cos (t^(2)) dt (x gt 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivatives of the given functions, we will use the Fundamental Theorem of Calculus and the chain rule. Let's solve each part step by step. ### Part (a): Given: \[ F(x) = \int_{x^2}^{x^3} \ln(t) \, dt \] **Step 1: Identify the limits of integration and the integrand.** - The lower limit is \( h(x) = x^2 \) - The upper limit is \( g(x) = x^3 \) - The integrand is \( f(t) = \ln(t) \) **Step 2: Apply the Leibniz rule for differentiation under the integral sign.** According to the Leibniz rule: \[ F'(x) = f(g(x)) \cdot g'(x) - f(h(x)) \cdot h'(x) \] **Step 3: Compute \( g'(x) \) and \( h'(x) \).** - \( g'(x) = \frac{d}{dx}(x^3) = 3x^2 \) - \( h'(x) = \frac{d}{dx}(x^2) = 2x \) **Step 4: Evaluate \( f(g(x)) \) and \( f(h(x)) \).** - \( f(g(x)) = f(x^3) = \ln(x^3) = 3\ln(x) \) - \( f(h(x)) = f(x^2) = \ln(x^2) = 2\ln(x) \) **Step 5: Substitute these values into the Leibniz rule.** \[ F'(x) = (3\ln(x)) \cdot (3x^2) - (2\ln(x)) \cdot (2x) \] \[ F'(x) = 9x^2 \ln(x) - 4x \ln(x) \] **Step 6: Simplify the expression.** \[ F'(x) = (9x^2 - 4x) \ln(x) \] ### Final Answer for Part (a): \[ F'(x) = (9x^2 - 4x) \ln(x) \] --- ### Part (b): Given: \[ f(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \cos(t^2) \, dt \] **Step 1: Identify the limits of integration and the integrand.** - The lower limit is \( h(x) = \frac{1}{x} \) - The upper limit is \( g(x) = \sqrt{x} \) - The integrand is \( f(t) = \cos(t^2) \) **Step 2: Apply the Leibniz rule for differentiation under the integral sign.** \[ f'(x) = f(g(x)) \cdot g'(x) - f(h(x)) \cdot h'(x) \] **Step 3: Compute \( g'(x) \) and \( h'(x) \).** - \( g'(x) = \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \) - \( h'(x) = \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \) **Step 4: Evaluate \( f(g(x)) \) and \( f(h(x)) \).** - \( f(g(x)) = f(\sqrt{x}) = \cos((\sqrt{x})^2) = \cos(x) \) - \( f(h(x)) = f\left(\frac{1}{x}\right) = \cos\left(\left(\frac{1}{x}\right)^2\right) = \cos\left(\frac{1}{x^2}\right) \) **Step 5: Substitute these values into the Leibniz rule.** \[ f'(x) = \cos(x) \cdot \frac{1}{2\sqrt{x}} - \cos\left(\frac{1}{x^2}\right) \cdot \left(-\frac{1}{x^2}\right) \] \[ f'(x) = \frac{\cos(x)}{2\sqrt{x}} + \frac{1}{x^2} \cos\left(\frac{1}{x^2}\right) \] ### Final Answer for Part (b): \[ f'(x) = \frac{\cos(x)}{2\sqrt{x}} + \frac{1}{x^2} \cos\left(\frac{1}{x^2}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 4 (Changing the Variable in a Definite Integral)|30 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.2 (Evaluating Definite Integrals by the Newton-Leibnitz formula)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)
  1. Estimate the integral from above I = int(0)^(1) (sin x)/( 1 + x^(3))...

    Text Solution

    |

  2. Proceeding from geometric reasoning, prove that : (a) if the funct...

    Text Solution

    |

  3. Estimate the integral int(0)^(1) sqrt(1 + x^(4)) dx using (a) the ...

    Text Solution

    |

  4. Find the derivative with respect to x of the following functions : (...

    Text Solution

    |

  5. Find the derivative with respect to x of the following functions : ...

    Text Solution

    |

  6. Find the points of extremum of the function F(x) = int(0)^(x) (sin t)/...

    Text Solution

    |

  7. Find the derivative of y, with respect to x, of the function represen...

    Text Solution

    |

  8. Find the limits : (a) lim(x to 0) (int(0)^(x^(3)) sin sqrt(x) dx)/(...

    Text Solution

    |

  9. Find the derivative (dy)/(dx) of the following implicit functions : ...

    Text Solution

    |

  10. Find : (a) the points of extrumum and the points of inflection on th...

    Text Solution

    |

  11. Prove that the function L(x), defined in the interval (0, infty) by ...

    Text Solution

    |

  12. Given the graph of the function y = f(x) (Fig. 62), find the shape of...

    Text Solution

    |

  13. Find the polynomial P(x) of the least degree that has a maximum equal...

    Text Solution

    |

  14. Find the polynomial P(x) of the least degree whose graph has three poi...

    Text Solution

    |

  15. Find the derivatives of the following functions : (a) F (x) = int(...

    Text Solution

    |

  16. Find the derivative (dy)/(dx) of functions represented parametrically...

    Text Solution

    |

  17. Find the points of extremum of the following functions : (a) F(x) ...

    Text Solution

    |