Home
Class 12
MATHS
Calculate the integral int(-5)^(5) (x^(...

Calculate the integral `int_(-5)^(5) (x^(5) sin^(2) x)/( x^(4) + 2x^(2) + 1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-5}^{5} \frac{x^5 \sin^2 x}{x^4 + 2x^2 + 1} \, dx, \] we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} [f(x) + f(-x)] \, dx. \] ### Step 1: Calculate \( f(-x) \) First, we need to compute \( f(-x) \): \[ f(x) = \frac{x^5 \sin^2 x}{x^4 + 2x^2 + 1}. \] Now substituting \(-x\) into \(f(x)\): \[ f(-x) = \frac{(-x)^5 \sin^2(-x)}{(-x)^4 + 2(-x)^2 + 1}. \] ### Step 2: Simplify \( f(-x) \) Now simplify \(f(-x)\): - The numerator becomes: \[ (-x)^5 = -x^5 \quad \text{and} \quad \sin^2(-x) = \sin^2 x. \] Thus, the numerator is: \[ -x^5 \sin^2 x. \] - The denominator becomes: \[ (-x)^4 + 2(-x)^2 + 1 = x^4 + 2x^2 + 1. \] Putting it all together, we have: \[ f(-x) = \frac{-x^5 \sin^2 x}{x^4 + 2x^2 + 1}. \] ### Step 3: Combine \( f(x) \) and \( f(-x) \) Now, we can find \( f(x) + f(-x) \): \[ f(x) + f(-x) = \frac{x^5 \sin^2 x}{x^4 + 2x^2 + 1} + \frac{-x^5 \sin^2 x}{x^4 + 2x^2 + 1}. \] This simplifies to: \[ f(x) + f(-x) = \frac{x^5 \sin^2 x - x^5 \sin^2 x}{x^4 + 2x^2 + 1} = 0. \] ### Step 4: Evaluate the integral Since \( f(x) + f(-x) = 0 \), we have: \[ I = \int_{-5}^{5} f(x) \, dx = \int_{0}^{5} [f(x) + f(-x)] \, dx = \int_{0}^{5} 0 \, dx = 0. \] Thus, the value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 4 (Changing the Variable in a Definite Integral)|30 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos