Home
Class 12
MATHS
Compute the integral int(-pi)^(pi)(sin 2...

Compute the integral `int_(-pi)^(pi)(sin 2 x)/( cos^(4) x + sin^(4) x)` dx

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \[ I = \int_{-\pi}^{\pi} \frac{\sin(2x)}{\cos^4(x) + \sin^4(x)} \, dx, \] we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} (f(x) + f(-x)) \, dx. \] ### Step 1: Find \( f(-x) \) First, we need to find \( f(-x) \): \[ f(-x) = \frac{\sin(2(-x))}{\cos^4(-x) + \sin^4(-x)}. \] Using the properties of sine and cosine: \[ \sin(-2x) = -\sin(2x) \quad \text{and} \quad \cos(-x) = \cos(x), \] we can rewrite \( f(-x) \): \[ f(-x) = \frac{-\sin(2x)}{\cos^4(x) + \sin^4(x)}. \] ### Step 2: Combine \( f(x) \) and \( f(-x) \) Now, we can combine \( f(x) \) and \( f(-x) \): \[ f(x) + f(-x) = \frac{\sin(2x)}{\cos^4(x) + \sin^4(x)} + \frac{-\sin(2x)}{\cos^4(x) + \sin^4(x)} = 0. \] ### Step 3: Evaluate the integral Since \( f(x) + f(-x) = 0 \), we have: \[ I = \int_{-\pi}^{\pi} f(x) \, dx = \int_{0}^{\pi} (f(x) + f(-x)) \, dx = \int_{0}^{\pi} 0 \, dx = 0. \] Thus, the value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 4 (Changing the Variable in a Definite Integral)|30 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

Compute the integrals I = int_(0)^(pi//4) (sin x + cos x)/( 3 + sin 2 x) dx

Compute the integrals : int_(pi//4)^(pi//3) (x dx)/( sin^(2) x)

int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

int _(-pi)^(pi) (sin^(4)x)/(sin^(4) x + cos^(4) x )dx is equal to

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x cos x)/(cos^(4)x+sin^(2)x)dx