Home
Class 12
MATHS
Prove that the equality int(0)^(pi//2) s...

Prove that the equality `int_(0)^(pi//2) sin ^(m) x dx = int_(0)^(pi//2) cos ^(m) ` x dx and apply the obtained result in computing the following integrals :
`int_(0)^(pi//2) cos^(2) "x dx and " int_(0)^(pi//2) sin ^(2) x dx`

Text Solution

Verified by Experts

The correct Answer is:
`I = (pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 4 (Changing the Variable in a Definite Integral)|30 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi//2)sin x.sin 2x dx=

Prove the equality int_(0)^(pi) f (sin x) dx = 2 int_(0)^(pi//2) f (sin x) dx

Evaluate the following integrals int_(0)^(pi//2)cos x dx

int_(0)^(pi//2) x sin x cos x dx

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx