Home
Class 12
MATHS
Compute underset(n rarr oo)("lim")(pi)/(...

Compute `underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)/(n)+ ….+ "sin"((n-1)pi)/(n)|`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the limit \[ \lim_{n \to \infty} \frac{\pi}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \ldots + \sin \frac{(n-1)\pi}{n} \right), \] we can follow these steps: ### Step 1: Rewrite the sum We can express the sum in a more manageable form. Notice that the sum can be rewritten as: \[ \sum_{k=1}^{n-1} \sin \frac{k\pi}{n}. \] Thus, we have: \[ \lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^{n-1} \sin \frac{k\pi}{n}. \] ### Step 2: Recognize the Riemann sum As \( n \to \infty \), the term \(\frac{1}{n}\) can be interpreted as the width of a small interval in a Riemann sum. We can let \( h = \frac{1}{n} \), and as \( n \to \infty \), \( h \to 0 \). The expression becomes: \[ \lim_{h \to 0} \sum_{k=1}^{n-1} \sin(k\pi h) \cdot h, \] where \( k \) goes from \( 1 \) to \( n-1 \). ### Step 3: Convert the sum to an integral The sum can be approximated by the integral: \[ \int_0^{1} \sin(\pi x) \, dx, \] where we have substituted \( x = kh \) and \( k = 1, 2, \ldots, n-1 \). ### Step 4: Evaluate the integral Now we compute the integral: \[ \int_0^{1} \sin(\pi x) \, dx. \] Using the antiderivative of \(\sin(\pi x)\): \[ \int \sin(\pi x) \, dx = -\frac{1}{\pi} \cos(\pi x) + C. \] Evaluating the definite integral from \( 0 \) to \( 1 \): \[ \left[-\frac{1}{\pi} \cos(\pi x)\right]_0^1 = -\frac{1}{\pi} \left( \cos(\pi) - \cos(0) \right) = -\frac{1}{\pi} \left( -1 - 1 \right) = \frac{2}{\pi}. \] ### Step 5: Multiply by \(\pi\) Now, we return to our limit: \[ \lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^{n-1} \sin \frac{k\pi}{n} = \pi \cdot \frac{2}{\pi} = 2. \] Thus, the final answer is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing the Limits of Sums with the Aid|3 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Finding Average Values of a Function|15 Videos
  • APPLICATION OF DIFFERENTIAL CALCULUS TO INVESTIGATION OF FUNCTIONS

    IA MARON|Exercise ADDITIONAL PROBLEMS|9 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos

Similar Questions

Explore conceptually related problems

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

Evaluate: (lim_(n rarr oo)n cos((pi)/(4n))sin((pi)/(4n))

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

lim_ (n rarr oo) (1) / (n) [tan ((pi) / (4n)) + tan ((2 pi) / (4n)) + ... tan ((n pi) / (4n) )]

The value of lim_( n to oo) (1)/(n) ( sin (pi/ n) + sin (2pi/n) + …+ sin (n pi/ n) ) is

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :

IA MARON-APPLICATIONS OF THE DEFINITE INTEGRAL-Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity
  1. Compute underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)...

    Text Solution

    |

  2. Find the static moment of the upper portion of the ellipse (x^(2))/(a^...

    Text Solution

    |

  3. Find the moment of inertia of a rectangle with base b and altitude h a...

    Text Solution

    |

  4. Calculate the moment of inertia about the y-axis of the figure bounded...

    Text Solution

    |

  5. In designing wooden girder bridges we often have to deal with logs fla...

    Text Solution

    |

  6. Find the moment of inertia about the x-axis of the figure bounded by t...

    Text Solution

    |

  7. Find the centre of gravity of the semicircle x^(2) + y^(2) = a^(2) sit...

    Text Solution

    |

  8. Find the coordinates of the centre of gravity of the catenary y=(1)/(2...

    Text Solution

    |

  9. Find the centre of gravity of the first are of the cycloid: x=a (t -...

    Text Solution

    |

  10. Find the Cartesian coordinates of the center of gravity of the are of ...

    Text Solution

    |

  11. Find the centre of gravity of the figure bounded by the ellipse 4x^(2)...

    Text Solution

    |

  12. Find the Cartesian coordinates of the centre of gravity of the figure ...

    Text Solution

    |

  13. Find the coordinates of the centre of gravity of the figure bounded by...

    Text Solution

    |

  14. Using the first Guldin theorem, find the centre of gravity of a semici...

    Text Solution

    |

  15. Using the second Guldin theorem, find the coordinates of the centre of...

    Text Solution

    |

  16. An equilateral triangle with side a revolves about an axis parallel to...

    Text Solution

    |