Home
Class 12
MATHS
Determine the average length of all vert...

Determine the average length of all vertical chords of the hyperbola `(x^(2))/(a^(2)) - (y^(2))/(b^(2))=1` over the interval `a le x le 2a`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the average length of all vertical chords of the hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) over the interval \(a \leq x \leq 2a\), we can follow these steps: ### Step 1: Find the equation of the hyperbola The hyperbola is given by: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] From this equation, we can express \(y\) in terms of \(x\): \[ \frac{y^2}{b^2} = \frac{x^2}{a^2} - 1 \implies y^2 = b^2\left(\frac{x^2}{a^2} - 1\right) \implies y = \pm b\sqrt{\frac{x^2}{a^2} - 1} \] ### Step 2: Determine the length of a vertical chord For a vertical chord at a specific \(x\), the endpoints are given by \(y = b\sqrt{\frac{x^2}{a^2} - 1}\) and \(y = -b\sqrt{\frac{x^2}{a^2} - 1}\). The length \(L\) of the vertical chord at this \(x\) is: \[ L = 2b\sqrt{\frac{x^2}{a^2} - 1} \] ### Step 3: Set up the integral for average length To find the average length of the vertical chords over the interval \([a, 2a]\), we need to integrate the length function \(L\) over this interval and then divide by the length of the interval: \[ \text{Average Length} = \frac{1}{2a - a} \int_a^{2a} L \, dx = \frac{1}{a} \int_a^{2a} 2b\sqrt{\frac{x^2}{a^2} - 1} \, dx \] ### Step 4: Simplify the integral Substituting \(L\) into the integral: \[ \text{Average Length} = \frac{2b}{a} \int_a^{2a} \sqrt{\frac{x^2}{a^2} - 1} \, dx \] Let \(u = \frac{x}{a}\), then \(dx = a \, du\) and the limits change from \(x = a\) to \(u = 1\) and from \(x = 2a\) to \(u = 2\): \[ = \frac{2b}{a} \int_1^2 \sqrt{u^2 - 1} \cdot a \, du = 2b \int_1^2 \sqrt{u^2 - 1} \, du \] ### Step 5: Evaluate the integral The integral \(\int \sqrt{u^2 - 1} \, du\) can be evaluated using the formula: \[ \int \sqrt{u^2 - 1} \, du = \frac{u}{2}\sqrt{u^2 - 1} - \frac{1}{2}\ln\left(u + \sqrt{u^2 - 1}\right) + C \] Evaluating from \(1\) to \(2\): \[ = \left[ \frac{u}{2}\sqrt{u^2 - 1} - \frac{1}{2}\ln\left(u + \sqrt{u^2 - 1}\right) \right]_1^2 \] Calculating at the limits: 1. At \(u = 2\): \[ = \frac{2}{2}\sqrt{2^2 - 1} - \frac{1}{2}\ln\left(2 + \sqrt{3}\right) = \sqrt{3} - \frac{1}{2}\ln(2 + \sqrt{3}) \] 2. At \(u = 1\): \[ = \frac{1}{2}\sqrt{1^2 - 1} - \frac{1}{2}\ln(1 + 0) = 0 \] Thus, the integral evaluates to: \[ = \sqrt{3} - 0 - \left(-\frac{1}{2}\ln(1)\right) = \sqrt{3} - 0 \] ### Step 6: Final average length calculation Putting it all together: \[ \text{Average Length} = 2b \left(\sqrt{3} - \frac{1}{2}\ln(2 + \sqrt{3})\right) \] ### Final Answer The average length of all vertical chords of the hyperbola over the interval \(a \leq x \leq 2a\) is: \[ \text{Average Length} = 2b \left(\sqrt{3} - \frac{1}{2}\ln(2 + \sqrt{3})\right) \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Areas in Rectangular Coordinates|25 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Areas with Parametrically Represented Boundaries|7 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing the Limits of Sums with the Aid|3 Videos
  • APPLICATION OF DIFFERENTIAL CALCULUS TO INVESTIGATION OF FUNCTIONS

    IA MARON|Exercise ADDITIONAL PROBLEMS|9 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos