Home
Class 12
MATHS
Find the average value of the square of ...

Find the average value of the square of the electromotive force `(E^(2))_(m)` over the interval from t = 0 to `t= (T)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average value of the square of the electromotive force \( (E^2)_m \) over the interval from \( t = 0 \) to \( t = \frac{T}{2} \), we can follow these steps: ### Step 1: Define the Electromotive Force The electromotive force \( E_m \) is given by: \[ E_m = E_0 \sin(\omega t) \] where \( E_0 \) is the maximum electromotive force and \( \omega \) is the angular frequency. ### Step 2: Calculate \( E_m^2 \) Now, we need to find \( E_m^2 \): \[ E_m^2 = (E_0 \sin(\omega t))^2 = E_0^2 \sin^2(\omega t) \] ### Step 3: Set Up the Average Value Formula The average value of a function \( f(t) \) over an interval \( [a, b] \) is given by: \[ \text{Average value} = \frac{1}{b-a} \int_a^b f(t) \, dt \] In our case, we need to find the average value of \( E_m^2 \) over the interval \( [0, \frac{T}{2}] \): \[ \text{Average value} = \frac{1}{\frac{T}{2} - 0} \int_0^{\frac{T}{2}} E_0^2 \sin^2(\omega t) \, dt \] ### Step 4: Simplify the Expression Substituting \( E_m^2 \) into the average value formula gives: \[ \text{Average value} = \frac{2}{T} \int_0^{\frac{T}{2}} E_0^2 \sin^2(\omega t) \, dt \] ### Step 5: Use the Identity for \( \sin^2 \) We can use the identity: \[ \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \] to rewrite \( \sin^2(\omega t) \): \[ \sin^2(\omega t) = \frac{1 - \cos(2\omega t)}{2} \] Thus, we have: \[ \int_0^{\frac{T}{2}} \sin^2(\omega t) \, dt = \int_0^{\frac{T}{2}} \frac{1 - \cos(2\omega t)}{2} \, dt \] ### Step 6: Calculate the Integral Now, we can calculate the integral: \[ \int_0^{\frac{T}{2}} \frac{1 - \cos(2\omega t)}{2} \, dt = \frac{1}{2} \left[ \int_0^{\frac{T}{2}} 1 \, dt - \int_0^{\frac{T}{2}} \cos(2\omega t) \, dt \right] \] Calculating the first integral: \[ \int_0^{\frac{T}{2}} 1 \, dt = \frac{T}{2} \] Calculating the second integral: \[ \int_0^{\frac{T}{2}} \cos(2\omega t) \, dt = \left[ \frac{\sin(2\omega t)}{2\omega} \right]_0^{\frac{T}{2}} = \frac{\sin(\pi)}{2\omega} - \frac{\sin(0)}{2\omega} = 0 \] Thus, we have: \[ \int_0^{\frac{T}{2}} \sin^2(\omega t) \, dt = \frac{1}{2} \left( \frac{T}{2} - 0 \right) = \frac{T}{4} \] ### Step 7: Substitute Back to Find the Average Value Now substituting back into the average value formula: \[ \text{Average value} = \frac{2}{T} \cdot E_0^2 \cdot \frac{T}{4} = \frac{E_0^2}{2} \] ### Final Answer The average value of the square of the electromotive force over the interval from \( t = 0 \) to \( t = \frac{T}{2} \) is: \[ \frac{E_0^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Areas in Rectangular Coordinates|25 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Areas with Parametrically Represented Boundaries|7 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing the Limits of Sums with the Aid|3 Videos
  • APPLICATION OF DIFFERENTIAL CALCULUS TO INVESTIGATION OF FUNCTIONS

    IA MARON|Exercise ADDITIONAL PROBLEMS|9 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos