Home
Class 12
MATHS
Investigate the following improper integ...

Investigate the following improper integrals for convergence :
(a) `int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(3))),`
(b) `int_(0)^(1)(x^(2)dx)/(root3((1-x^(2))^(5))),`
(c ) `int_(0)^(1)sqrt((x)/(1-x^(4)))dx,`
(d) `int_(0)^(1)(dx)/(1-x^(3)+x^(5)),`
(e ) `int_(0)^(1)(dx)/(x-sinx),`
(f) `int_(0)^(2)(1n(root4(x)+1))/(e^(tanx)-1)dx`

Text Solution

Verified by Experts

The correct Answer is:
(a) It converges;
(b) diverges;
(c ) converges;
(d) converges;
(e ) diverges;
(f) converges.
Promotional Banner

Topper's Solved these Questions

  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.3 GEOMETRIC AND PHYSICAL APPLICATIONOS OF IMPROPER INTEGRALS|8 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(sqrt(x))/(1+x^(2))dx

int_(0)^(1)(x^(4))/(sqrt(1-x^(5)))dx

int_(0)^(1)x e^(x)dx=

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=