Home
Class 11
PHYSICS
If vec(P)=2hat(i)+3hat(j)-4hat(k) and ve...

If `vec(P)=2hat(i)+3hat(j)-4hat(k)` and `vec(Q)=5hat(i)+2hat(j)+4hat(k)`. Find the angle between the two vectors.

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WORK POWER ENERGY

    AAKASH SERIES|Exercise EXERCISE - 3|61 Videos
  • WORK POWER ENERGY

    AAKASH SERIES|Exercise EXERCISE - 1B|39 Videos
  • WORK -POWER-ENERGY

    AAKASH SERIES|Exercise PRACTICE SHEET (ADVANCED) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|36 Videos
  • WORK, POWER & ENERGY

    AAKASH SERIES|Exercise PRACTICE EXERCISE (PERFECTLY INELASTIC COLLISIONS)|5 Videos

Similar Questions

Explore conceptually related problems

If vec(F) = 3hat(i) + 4hat(j) + 5hat(k) and vec(S) = 6hat(i) + 2hat(j) + 5hat(k) , find the work done by the force.

If vec(F) = hat(i) + 2hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) find vec(F).vec(V)

Knowledge Check

  • If vec(P)=2hat(i)+3hat(j)-4hat(k)andvec(Q)=5hat(i)+2hat(j)+4hat(k) . Find the angle between the two vectors.

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • If vec(F)= 3hat(i) + 4hat(j) + 5hat(k) and vec(S) = 6hat(i) + 2hat(j) + 5hat(k) , find the work done by the force

    A
    51 units
    B
    20 units
    C
    30 units
    D
    41 units
  • If vec(F)= hat(i) + 2hat(j) + hat(k) and vec(V)= 4hat(i)- hat(j) + 7hat(k) find vec(F).vec(V)

    A
    6W
    B
    9W
    C
    13W
    D
    12W
  • Similar Questions

    Explore conceptually related problems

    If the vectors vec(P)=a hat(i)+a hat(j)+3hat(k) and vec(Q)=a hat(i)-2hat(j)-hat(k) are perpendicular to each other then the positive value of .a. is

    Given two vectors vec(A) = hat(i) - 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (vec(A) + vec(B)) with the X-axis is

    Given the vectors vec(A) = 2 hat(i) + 3hat(j) - hat(k), vec(B) = 3hat(i) - 2hat(j) - 2 hat(k) " & " vec( C) = p hat(i) + p hat(j) + 2 p hat(k) find the angle between (vec(A) - vec(B)) " & " vec( C)

    If vec(A)=2hat(i)+3hat(j)+6hat(k) and vec(B)=3hat(i)-6hat(j)+2hat(k) then vector perpendicular to both vec(A) and vec(B) has magnitude K times that of 6hat(i)+2hat(j)-3hat(k) . Then K =

    If the vectors vec(P)= a hat(i) + a hat(j) + 3hat(k) and vec(Q)= a hat(i) - 2hat(j) - hat(k) are perpendicular to each other then the positive value of 'a' is