Home
Class 11
PHYSICS
If vec(A) + vec(B) = vec(R ) and 2 vec(A...

If `vec(A) + vec(B) = vec(R ) and 2 vec(A) + vec(B)` is perpendicular to `vec(B)` then

A

A = R

B

B = 2R

C

B = R

D

B = A

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WORK POWER ENERGY

    AAKASH SERIES|Exercise EXERCISE - 2|107 Videos
  • WORK -POWER-ENERGY

    AAKASH SERIES|Exercise PRACTICE SHEET (ADVANCED) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|36 Videos
  • WORK, POWER & ENERGY

    AAKASH SERIES|Exercise PRACTICE EXERCISE (PERFECTLY INELASTIC COLLISIONS)|5 Videos

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are two unit vectors such that vec(a) + 2vec(b) and 5vec(a) - 4vec(b) are perpendicular to each other, then the angle between vec(a) and vec(b) is

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)

Knowledge Check

  • If vec(C) = vec(A) + vec(B) then

    A
    `vec(C)` is always greater than `|vec(A)|`
    B
    C is always equal to A+B
    C
    C is never equal to A+B
    D
    It is possible to have `|vec(C)| lt |vec(A)|` and `|vec(C)| lt |vec(B)|`
  • If (vec(A) + vec(B)) is perpendicular to vec(B) and (vec(A) + 2 vec(B)) is perpendicular to vec(A) , then

    A
    `A = sqrt2B`
    B
    A = 2B
    C
    2A = B
    D
    A = B
  • If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx vec(b), vec(a) ne vec(0), vec(b) ne vec(0), vec(a) ne lamda vec(b) and vec(a) is not perpendicular to vec(b) , then vec(r ) =

    A
    `vec(a) - vec(b)`
    B
    `vec(a) + vec(b)`
    C
    `(vec(a) xx vec(b)) + vec(a)`
    D
    `(vec(a) xx vec(b)) + vec(b)`
  • Similar Questions

    Explore conceptually related problems

    If vec(A) + vec(B) = vec(C ) , then magnitude of vec(B) is

    If vec(A) + vec(B) = vec(C ) , then magnitude of vec(B) is

    If vec(A)+vec(B)=vec(C ) , then magnitude of vec(B) is

    If vec(a)= vec(i) + vec(j) + vec(k), vec(b)= -vec(i) + 2vec(j) + vec(k), vec(c )= vec(i) + 2vec(j) -vec(k) then a unit vector perpendicular to vec(a) + vec(b) and vec(b) + vec(c ) is

    The angle between vec(A) + vec(B) and vec(A) xx vec(B) is