Home
Class 11
PHYSICS
If vec(b) = 3 vec(i) + 4 vec(j) and vec(...

If `vec(b) = 3 vec(i) + 4 vec(j) and vec(a) = hat(i) - vec(j)` the vector having the same magnitude as that of `vec(b)` and parallel to `vec(a)` is

A

`(5)/(sqrt2) (hat(i) - hat(j))`

B

`(5)/(sqrt2) (hat(i) + hat(j))`

C

`5 (hat(i) - hat(j))`

D

`5 (hat(i) + hat(j))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    AAKASH SERIES|Exercise Lecture Sheet Exercise-III (Multiplication of Vectors) (Straight Objective Type Questions)|8 Videos
  • VECTORS

    AAKASH SERIES|Exercise Lecture Sheet Exercise-III (Multiplication of Vectors) (More than correct answer type Questions)|1 Videos
  • VECTORS

    AAKASH SERIES|Exercise Lecture Sheet (Exercise-I) (Integer Type Questions)|3 Videos
  • UNITS AND MEASUREMENTS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED))|14 Videos
  • VISCOSITY

    AAKASH SERIES|Exercise Questions for Descriptive Answers|3 Videos

Similar Questions

Explore conceptually related problems

If vec(a) is a unit vector and vec(a) xx vec(i) = vec(j) , then vec(a).vec(i) =

If vec(a)= vec(i) + vec(j) + vec(k), vec(b)= -vec(i) + 2vec(j) + vec(k), vec(c )= vec(i) + 2vec(j) -vec(k) then a unit vector perpendicular to vec(a) + vec(b) and vec(b) + vec(c ) is

Given vec(a) = vec(i) + vec(j)-vec(k), vec(b)= - vec(i) + 2vec(j) + vec(k) and vec(c )= -vec(i) + 2vec(j) -vec(k) . A unit vector perpendicular to both vec(a) + vec(b) and vec(b) + vec(c ) is

If vec(a)= 2vec(i) + vec(j)-3vec(k), vec(b)=vec(i) -2vec(j) + vec(k) , then a vector of length and perpendicular to both vec(a) and vec(b) is

If vec(a)= 3vec(i) -5vec(j), vec(b)= 6vec(i) + 3vec(j) are two vectors and vec(c ) is a vector such that vec(c )= vec(a) xx vec(b) , then |vec(a)|:|vec(b)|: |vec(c )| =

If vec(a).vec(i)=4 , then (vec(a) . vec(j))xx (2vec(j)-3vec(k)) =

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)

If vec(a)= 2vec(i) + 5vec(j) + vec(k) and vec(b)=4vec(i) + mvec(j) + n vec(k) are collinear vectors, then find the m and n

If vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) then show that vec(a)- vec(d) and vec(b) -vec(c ) are parallel vectors.