Home
Class 11
PHYSICS
If vec(P) + vec(Q) = vec(R ) and vec(P) ...

If `vec(P) + vec(Q) = vec(R ) and vec(P) - vec(Q) = vec(S)`, then `R^(2) + S^(2)` is equal to

A

`P^(2) + Q^(2)`

B

`2(P^(2) - Q^(2))`

C

`2(P^(2) + Q^(2))`

D

4PQ

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    AAKASH SERIES|Exercise Practice Sheet (Exercise-I) (Addition of Vectors) (Level-II) (Straight Objective Type Questions)|13 Videos
  • VECTORS

    AAKASH SERIES|Exercise Practice Sheet (Exercise-II) (Resolution of Vectors (Level -I)) (Straight Objective Type Questions)|19 Videos
  • VECTORS

    AAKASH SERIES|Exercise Lecture Sheet Exercise-III (Multiplication of Vectors) (Integer Type Questions)|4 Videos
  • UNITS AND MEASUREMENTS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED))|14 Videos
  • VISCOSITY

    AAKASH SERIES|Exercise Questions for Descriptive Answers|3 Videos

Similar Questions

Explore conceptually related problems

Three vectors vec(P), vec(Q), vec(R) obey vec(P) + vec(Q) = vec(R) and P^(2) + Q^(2) = R^(2) the angle between vec(P) & vec(Q) is

If vec(A) + vec(B) = vec(R ) and 2 vec(A) + vec(B) is perpendicular to vec(B) then

Let vec(a), vec(b), vec(c ) be such that vec(c ) ne vec(0), vec(a) xx vec(b)= vec(c ) and vec(b) xx vec(c )= vec(a) then show that vec(a), vec(b) and vec(c ) are pairwise perpendicular, |vec(b)|=1 and |vec(c )|= |vec(a)| .

If vec(a) = vec(i) + 2vec(j) - 3vec(k), vec(b)= 2vec(i) + vec(j) - vec(k) and vec(u) is a vector satisfying vec(a) xx vec(u) = vec(a) xx vec(b) and vec(a).vec(u)= 0 , then 2|vec(u)|^(2) =

If vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) then show that vec(a)- vec(d) and vec(b) -vec(c ) are parallel vectors.

If vec(a).vec(b) = vec(a).vec(c ) and vec(a) xx vec(b)= vec(a) xx vec(c ) and vec(a) ne vec(0) then show that vec(b)= vec(c )

Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(j)-vec(k) . If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx vec(b) , then (vec(r ))/(|vec(r )|) =